
Digital Technologies Institute

B4

The comprehensive,
modern experimentation-

based course deepens the
understanding of the

fascinating world of Digital
Technologies.

Arithmetics
Extension Kit 0010

0000
0001
1001

“All parts should go together without forcing. You must
remember that the parts you are reassembling were

disassembled by you. Therefore, if you can’t get them
together again, there must be a reason. By all means, do

not use a hammer. ”

(IBM Manual, 1925)

� B4 Arithmetics Extension Study Guide, Revision 1.1.32

Table of Contents
Included Parts 6...

Welcome back, Parents and Teachers 7..

Welcome back, Students 7..

B4’s Arithmetics Extension Kit Parts 7..

Core Modules 8..

Helper Module 11...

Please look after me 11...

About Numbers 12..

A Word about Power 12..

Experiments 13..

Overview 13...

Experiment 1: Multiplication - Exploring the Challenge 14.....................................

Experiment 2: Loops 17..

In Summary 20..

Questions 21...

Experiment 3: Knowing When to Stop 22...

Experiment 4: A Multiplication Program 26..

From Absolute Data to Data Pointers 30..

Experiment 5: Data Pointers 31...

Experiment 6: Automating Data Pointers 34..

Experiment 7: Automating Loops 39...

Experiment 8: We are Building the B4/A 42..

Module Layout 43..

Power Wiring 44..

Data Wiring 45...

Control Wiring 45..
B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 3

Experiment 9: Programming the B4/A 47..

Computing Multiplication 48..

Computing Division 51...

Computing Averages 54...

Experiment 10: Print() 57..

Computing Fibonacci Numbers 62..

Loading and Running the Program 65..

Summary and Conclusions 66...

Further Reading 66..

Appendix A: Programming Table Template. 67...

Appendix B: Solutions 68...

Appendix C: Quick Reference Guide 70..

� B4 Arithmetics Extension Study Guide, Revision 1.1.34

Safety instructions

The B4 operates on 5 Volts and only draws a few milliamperes. Nevertheless, it is an
electric device and should be handled as such. We recommend to treat is with care, and to
keep it on a dry and level surface. Do not scratch the surface of the printed circuit boards
with sharp or metallic instruments, as this might damage the wires.

Acknowledgements

We would like to thank Charles Petzold, the author of ‘Code: The Hidden Language of
Computer Hardware and Software’, published in 1999. His book has both inspired and
guided the design of the B4. We also recommend reading it either during or after students
have been working through this experiment plan.

We would further like thank Henrik Maier from proconX for his guidance and feedback on
the electrical engineering design, fabrication and component selection, which has been
invaluable to transform the B4 from a breadboard prototype to a robust design that can be
used in the classroom.

Special thanks to Dr. Hayden White for his support and input which have been invaluable
to get the B4 off the ground. His regular feedback on the development of the B4 has
influenced many of the design decisions.

A big thank you is owed to the Arduino community. Two of the B4’s module deploy an
Atmega processor which run Arduino programs. Keep up the great work !

The logic diagrams in this handbook have been designed using the Logicly program. We
think it is a great tool to quickly draw and test Boolean logic problems.

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 5

WARNING:
CHOKING HAZARD - Small Parts
Not for children under 3 years.
PHOTOSENSITIVE EPILEPSY -
Some of the experiments produce
light flashes that can potentially
trigger seizures in people with
photosensitive epilepsy

!

Included Parts

1x Control Unit
1x 2-Line-to-1-Line Selector
1x Random Access Memory 16x4 bit
3x Latch
1x Automatic Programmer Arduino Shield (Extended Version)
1x Splitter

10 x 4 Pin Wires
10 x 2 Pin Wires
10 x 1 Pin Wires

1x Student Handbook
1x B4 Arduino Library (available for download)

Not included
B4 Base Kit, sold separately
Arduino Uno or compatible (required for the full function of the Automatic Programmer
Arduino Shield - it is already included in the B4 base kit)

Power Consumption:
5V, 200mA DC.

This product complies with the Restriction of Hazardous Substances Directive and is lead
free.

Designed and assembled in Brisbane, Australia
(c) Digital Technologies Institute PTY LTD, 2017-2019 AD. All rights reserved.

� B4 Arithmetics Extension Study Guide, Revision 1.1.36

Welcome back, Parents and Teachers
The B4 Computer Processor (base) Kit explored the fundamental operation of computers
with core functions, such as data storage, addition and subtraction with the underlying
algorithmic design. This extension kit offers an exciting opportunity to dive deeper into the
inner workings of a digital system by expanding the arithmetic capabilities of the B4
towards multiplication, division and beyond. In the process of implementing these
capabilities from the ground up in a computer, students learn about loops, conditional
jumps, data pointers and memory addresses. This curriculum follows the B4-style bottom-
up motivational approach, in which computing concepts are introduced by need and
motivated by context. Students gain an understanding of the practical necessity of
computing concepts and learn about them from a hardware and a software perspective.
The result is a deeper and more natural understanding of Digital Technologies.

Again, this kit has been designed with the new Australian Curriculum: Digital Technologies
in mind.

Welcome back, Students
Congratulations on graduating from the B4 base course. By completing the experiments
from the previous course, you have gained a solid understanding of how a computer really
works inside. It is now time to apply our knowledge to teaching the B4 a few more tricks.
With this new kit in front of you, we will expand the B4’s capabilities in performing more
algorithmic operations. We’ll start with multiplication and division and go forward from
there.

Besides following this study guide, we again encourage you to conduct your own
experiments and try things that are not in this handbook. You never know what you might
discover.

Now let’s see what’s in the box:

B4’s Arithmetics Extension Kit Parts
The B4 Arithmetics Extension Kit consists of seven modules which extend the B4 base kit
that you already have. The Automatic Programmer replaces the Automatic Programmer
from the base kit.

We can classify the B4 Arithmetics Extension Kit modules into control, memory & storage
and programming. All modules within a category are of the same colour. The control
modules are blue and the memory & storage modules are green. The programming
module is red.  

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 7

You might wonder “Hang on, this is an Arithmetics Extension Kit. Where are the yellow
modules?”. This is a very valid question. As you will see, we will build a lot of clever logic
around the existing arithmetic modules, namely the Adder and the Inverter.

The modules are all labeled. Take them out of the box and find each of the modules as we
describe them below.

Core Modules

Function Color Modules

Core Modules Control blue Control Unit, 2-to-1 Selector,
Splitter

Memory & Storage green Data RAM, 3x Latch

Helper Module Programming red Automatic Programmer

� B4 Arithmetics Extension Study Guide, Revision 1.1.38

Extended
delay chain

Zero Flag
Latch

Opcode
Extender

Control
Signals
Output

The Control Unit, shown above, is the largest of the B4 core modules. It performs four
main functions:

1) The Opcode Extender grows the number of opcodes from four to 15. This means that
B4 can now support up to 15 different commands, allowing us to jump around in code,
access data directly from memory, and more. Where we only needed 3 opcodes (LOAD,
SELECT, and WRITE) in the base kit, we will need a few more for the experiments in
this book.

2) The Zero Flag Latch is a single Flip Flop that remembers when its input was zero. This
is useful to determine when a loop has run its course and should stop.

3) The Extended Delay Chain provides important support services. This includes an
extended chain of inverter circuits to delay the CLK and !CLK signals, giving the B4
more time to synchronise its many new functions internally. For a refresher of these
signals, see experiment #8 in the B4 Base Kit Handbook.

4) The Control Signals Output is the place where many of the opcodes are being
translated into electrical signals. We will connect them to the other B4 modules during
the various experiments.

There are six little electrical connectors called jumpers on this board, which we have
circled in the figure above. They connect the various circuits to the Extended Delay Chain.
They ensure that low-level functions are performed in the right order. The precise
calibration is depends on the exact timing of the chips, which can vary between production
runs. At the bottom right of the Control Unit you find a revision number, such as 1.4.3.

Please go to https://www.digital-technologies.institute/handbooks to download the
Control Unit Calibration document, which contains the exact jumper settings for
your Control Unit. You will need it for the experiments 8 and higher. All other
experiments can be conducted with the jumpers installed.

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 9

https://www.digital-technologies.institute/handbooks

The Random Access Memory (RAM) replaces
the Program RAM Module from the B4 Base
Kit. It is identical to the Data RAM Module from
the B4 Computer Processor kit.

�

A Latch has the function of short-term memory in
a computer. It stores (or ‘buffers’) some data
before that data can be further processed. This
Latch module is like the one in the B4 base kit.

�

The 2-to-1 Selector is a switch that can
change the data paths in our computer. Ours
is identical to the one from the base kit. We
will use the second 2-to-1 Selector to enable
the B4 to do relative data addressing.

�

� B4 Arithmetics Extension Study Guide, Revision 1.1.310

Helper Module

We now have a basic understanding of the new modules of our B4 Arithmetics Extension
Kit. Don’t worry if you haven’t understood everything yet. We will revisit each module in
more depth during the following experiments. In the box, there are some additional 1, 2,
and 4 pin wires, that you are already familiar with from working with the base kit.

As a reminder, in the diagrams in this book, we use the following wiring notation. A solid
line denotes a 2 pin power or 4 pin data wire. A line with two arrows denotes a 1 pin
control wire. This is just to make the setup a little bit easier for you.

Please look after me
The B4 is fairly robust and will last a long time with proper care. As long as you don’t plug
wires into connectors they are not designed to go in and as long as you don’t drop the
modules, step on them or use them as a doorstopper, things should be just fine.
Always only plug the 2 pin wires into 2 pin connectors. the same applies to 4 pin wires and
connectors. Under no circumstances plug a 2 pin wire into a 4 pin connector. Some
of the experiments in this handbook require to plug a single wire into a 2 pin connector.
Read on about this in the following section below.

The Splitter is a little passive module that
allows us to split a single signal into three
outputs. We use the splitter when we don’t
have enough 4-pin output ports on a module.
Unlike the other modules, the Splitter does
not require power. �

The Automatic Programmer is the extended
version of the Automatic Programmer from the
Base Kit. Its main function of temporarily taking
control of the B4 hasn’t changed, but it can
now also influence the Program Counter.

�

Symbol Meaning

2 pin or 4 pin wire

1 pin wire�

�

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 11

About Numbers
To be clear about the distinction of binary and decimal numbers, we add a capital ‘B’ to
binary numbers. This way we can distinguish for example 11 (decimal eleven) from B0011
(decimal 3), or 10 (decimal ten) from B0010 (decimal 2).

A Word about Power
Each of the B4’s modules has a power distribution system on the left hand side of the
modules. With the exception of the Program Counter, which connects to a USB port, the
other modules have power in and out connectors.

+5V is on the left and GND (Ground, or 0V) is on the right. The wires will always connect
in the right way, but sometimes we will need to connect a single wire to either +5V or
GND during some of the experiments. When asked to connect to +5V, just plug a single
wire into the left pin of the power node. If asked to connect to GND, plug a single wire into
the right pin of a power node.

Ok, that is enough preparation for now. We will collect more details as we work through the
experiments. Let’s get started.  

� B4 Arithmetics Extension Study Guide, Revision 1.1.312

+5V GND (0V)

Experiments
Overview
In this handbook, we have prepared several experiments that will help you to build a
computer that can perform multiplication, division and more. You will learn how loops work
inside a computer and what data pointers are.

We recommend that the experiments be taken in sequence. But if you are already a
computer genius, feel free to jump around. We should mention, that the B4 can do much
more than what is written in this handbook. Feel free to explore and try out different things
as you like.

Experi
ment

Title Learning Objectives

1 Multiplication - Exploring
the Challenge

How a computer performs multiplication. Simple
approach. Discussion of limitations. Design of a
general-purpose approach to multiplication

2 Loops Repetition of commands through unconditional
jumping.

3 Knowing when to stop Function of the Zero Flag Latch module.
Teaching the B4 when to to stop a loop.

4 A Multiplication Program Moving from absolute data values to data
pointers. Extension of the B4’s opcode
repertoire.

5 Data Pointers How a computer addresses memory by pointing
at it.

6 Automating Data Pointers Introduction of a Latch to enable data pointers at
runtime of a program.

7 Automating Loops Introduction of a Latch to enable loops at
runtime of a program.

8 We are Building the B4/A Hardware setup of a machine that can perform
multiplication, division, averages, and more.

9 Programming the B4/A We design, document and run a number of
exciting algorithm, which apply our learnings
from the previous experiments. This includes
multiplication, division, and average algorithms.
We conclude with an algorithm that computes
Fibonacci numbers.

10 Summary and Conclusions We reflect on what we have learned in this
course

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 13

Experiment 1: Multiplication - Exploring the Challenge

Our goal is to extend the B4 architecture from the B4 base kit handbook so that our B4
can perform general multiplication and division. With general, we mean multiplications of
any two natural numbers, within the limits of our 4 bit architecture. So we are limited to
integers and the multiplication result must be less than 16. As multiplication and division
are closely related, we assume that we can initially focus on multiplication and then look at
what we need to do to let the B4 do division.

We have previously learned that a computer multiplies two numbers by performing a
series of additions. For example, 3x5=5+5+5=15. So, to multiply three with five, we have to
perform two additions: five plus five plus five.

How could we make this happen with a computer?

First attempt: We write a program that adds:

This will definitely produce 15. All done, class dismissed. Everyone go home.

But what if we want to compute 4x3? We have to write another program:

Since 3x4 is equivalent to 4x3, we can make the program a bit shorter:

Line Code

0 LOAD(5);

1 ADD(5);

2 ADD(5);

3 WRT();

Line Code

0 LOAD(3);

1 ADD(3);

2 ADD(3);

3 ADD(3);

4 WRT();

� B4 Arithmetics Extension Study Guide, Revision 1.1.314

Hang on, that’s not very practical. We have to write a different program every time the
numbers change. Also, the many ADD() statements are very confusing, as we have to
manually keep count of how many we need. When we want to compute 2x5 we need 1
ADD() command, but for 3x4 we need 2 of them. What if we could do the following to
calculate 3x4?

If we then wanted to calculate 2x5, we would write:

We see that we re-use the entire program and all we need to do is to replace the numbers
in line 1.

When we look at the program, we see that our B4 can already carry out the LOAD(),
ADD() and WRT() commands. However the ‘do this 2 times’ is new. We need to find out
what, for example, ‘ADD(5) 2 times’ means for a computer and how we could make it
happen.
Let’s break this into pieces:

1) ADD(5)
2) 2
3) times
 

Line Code

0 LOAD(4);

1 ADD(4);

2 ADD(4);

3 WRT();

Line Code

0 LOAD(0);

1 ADD(4). Do this 3 times

2 WRT();

Line Code

0 LOAD(0);

1 ADD(5). Do this 2 times

2 WRT();

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 15

We can generalise this to:

1) ADD(multiplier)
2) multiplicand
3) times

Luckily, our B4’s Adder module can already add. Therefore, we don’t need to worry about
point 1). Point 3) refers to a repeated action, meaning some sort of loop. Point 2) refers to
a defined number of times that the loop is run, until the algorithm is complete.

In the following chapters, we will explore 2) and 3) further. We start with 3), the loop.

� B4 Arithmetics Extension Study Guide, Revision 1.1.316

Let’s pause here for just a moment to learn
some important terminology.

In 3x4, the 3 is the multiplicand and 4 is the
multiplier. You can remember this simply as
follows: In a multiplication, the first number is
the multiplicand and the second number is the
multiplier.

Experiment 2: Loops

Modules Required: Program Counter, 1x Variable, Data RAM, Program RAM

Connect the Variable to the Program Counter as shown. In particular, run a 4 pin wire from
the Variable’s output to the Program Counter In port. Connect a 1 pin wire to the
Program Counter’s Set Program Counter pin and connect the other end of that wire
to GND for the moment. We will move this later.

�

Setup of Experiment 2, Part 1

1. Turn the knob on the Variable until it shows B1010 (Decimal 10).
2. Press the Enter button on the Program Counter until it displays for example 03.
3. Then, move the end of the 1 pin wire from GND to +5V.

What happens?

The Program Counter will jump to position 10, which is B1010 in binary.

Let’s try this again, but with another value.
4. Move the end of the 1 pin wire from +5V to GND
5. Set the Variable to another value, let’s say B0110 (Decimal 6)
6. Then, connect the wire to +5V again and the Program Counter will jump to 6.

We have just discovered that we can influence the Program Counter so that it will jump to
any step in the program that we want it to go to. Of course it would be entirely impractical if
we wanted to influence a program by manually setting values on a Variable and then
connecting and disconnecting wires. There has to be a better way than that. We want
automated jumping, ideally by making it part of the program itself. Luckily, the B4 from the

USB

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 17

base kit has a spare opcode, which is called User Defined. The plan is to set a flag in the
program to indicate that we want to make a jump and store a value in the Data RAM to
indicate where we want to jump to.

Let’s now run an experiment in which we program the Program RAM to send a signal to
the Program Counter to jump to a defined position as set by the Variable. In our
experiment, illustrated below, the left Variable plays the role of the Data RAM. Leave the 1
pin wire from the Program RAM’s port D to the Program Counter’s Set Program
Counter disconnected for the moment.

In our experiment, we want to automatically jump from step 7 to step 3 in our program. For
this, two things need to happen during step 7:

1) The Program RAM has to contain the value B0001. This sends an electrical impulse to
the Set Program Counter Pin of the Program Counter, which will then jump to whatever
value is present at the Program Counter In port.

2) Data RAM (in our experiment the left Variable), has to provide the binary value B0011 to
the Program Counter.

For this experiment, we only want to experiment with the loop, so the rest of the program is
not important. We simply set all other RAM values to 0.

�

Setup of Experiment 2, Part 2

Set the left Variable to B0011. That’s the value we want the Program Counter to jump to.
Then, with the right Variable, we will program the Program RAM with the code to make the
jump happen. Set the right Variable B0000. Then, set the Program Counter to 0000 as
well.

First, we want to clear the Program RAM.

1. Repeat

USB

� B4 Arithmetics Extension Study Guide, Revision 1.1.318

2. Press Button on Right Variable to store 0000 into the Program RAM
3. Press Enter button on Program Counter
4. Until Program Counter displays 0000 (that’s 1111+1)

Now that you have cleared the Program RAM you can advance the Program Counter to
Step 7 (B0111) and program the value of B0011 into it. This is the address we later want to
jump to. Then, press the Zero button on the Program Counter to go back to Step 0. Our
Program RAM should now look like in the table below. In the table, we have left fields of
0’s empty to improve the readability. So, basically we want our program to jump to step 3
once we reach step 7, so we will have a step sequence of 0, 1, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7,
3, 4, 5, 6, 7, 3,

Program for Experiment 2, Part 2

Now is the time to reconnect the 1 pin wire from the Program RAM’s port D to the
Program Counter’s Set Program Counter, as shown in the figure above.

Now press the Enter button on the Program Counter until you reach step 6. Then press the
button again and the Program Counter will jump straight to step 3. Keep pressing the Enter
button and observe how you are now in a loop: Step 3, 4 , 5, 6, 7, 3, In fact the

Data RAM Program RAM Description

Step # 3 2 1 0 SUB WRT SEL USR

Step 15

Step 14

Step 13

Step 12

Step 11

Step 10

Step 9

Step 8

Step 7 0 0 1 1 0 0 0 1 Jump to step 3

Step 6

Step 5

Step 4

Step 3

Step 2

Step 1

Step 0

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 19

Program Counter does reach step 7. The jumping from 3 to 7 happens too fast for our
eyes. How do we know that step 7 is reached? Simply, if step 7 weren’t reached, the Jump
command would never have been executed.
Still, one practical issue remains: The left Variable acting as Data RAM substitute. Let’s
replace it with a real Data RAM as shown in the next figure. Again, leave the 1pin wire
from the Program RAM’s port D to the Program Counter’s Set Program Counter
disconnected until you have programmed the RAM modules.

�
Setup of Experiment 2, Part 3

As we can see, the left Variable is now only used to program the Data RAM. The Data
RAM Module’s output is connected to the Program Counter In port of the Program Counter
module. Following the procedures that you are already familiar with, program the Data and
Program RAM modules with the program from the previous experiment (part 2). Then,
press the Zero button on the Program Counter to go back to Step 0. Finally, reconnect
the 1 pin wire from the Program RAM’s port D to the Program Counter’s Set
Program Counter. Now press the Enter button on the Program Counter until you reach
step 6. Then press the button again and the Program Counter will jump straight to step 3.
Keep pressing the Enter button and observe how you are now in a loop: Step 3, 4 , 5, 6, 7,
3.

In Summary

In this experiment, we have successfully demonstrated that a program, which is stored in
the Program RAM can influence the Program Counter module to jump to a program step
� B4 Arithmetics Extension Study Guide, Revision 1.1.320

as preset in the Data RAM module. We now know how to loop code. This is called an
unconditional jump. It is unconditional, because it will always jump. We abbreviate jump as
JMP. What we need next is a conditional jump that is only executed as long as a condition
is true (or false).

Questions

Question 2.1

?
What was the reason for leaving the 1 pin
wire from the Program RAM’s port D to the
Program Counter’s Set Program Counter
disconnected during the programming
phase?

What would have happened if we had not
disconnected the wire. Explain your
thinking and conduct an experiment to
verify it.

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 21

Experiment 3: Knowing When to Stop

In experiment 1 we found that one of the challenges in multiplication of numbers is to know
when to stop. One of the examples we used was 2x5, which we wrote as.

There are different ways of going about keeping track of how many times a loop has been
executed. One way of doing this is to count the number of loops. When our program above
is executed (runs), then something like this would happen  

This program will perform two ADD(5) operations, which will result in 10. At the end of the
program, the Loop Counter Value will be 2.

Now here comes a thought from the engineering perspective: To determine if some
number is of a certain value, a piece of hardware (a circuit) is required. And here is the
challenge: We would need different circuits for each different multiplicand (3x4, or 5x8, or
7x7, or 12435768973x2, etc.). And because there is an infinite number of multiplicands,
we would require an infinite number of circuits, which would make our computer infinitely
large and therefore infinitely heavy. An infinitely heavy computer would collapse under its
own weight and tear a hole in the space time continuum which would result in a black hole

Line Code

0 LOAD(0);

1 ADD(5). Do this 2 times

2 WRT();

Command Result Value Loop Counter Value

Set Loop Counter Value to 0 0

LOAD(0); 0 0

ADD(5); 5 0

Add 1 to the Loop Counter Value 5 1

Repeat the loop (JMP) if the value of the
loop counter is less than 2

5 1

ADD(5); 10 1

Add 1 to the Loop Counter Value 10 2

Repeat the loop (JMP) if the value of the
loop counter is less than 2

10 2

WRT(); 10 2

� B4 Arithmetics Extension Study Guide, Revision 1.1.322

which would swallows the Earth, our solar system, and possibly our entire galaxy. This
would probably ruin our day ...

Is there a better way which would not destroy planet Earth? Turns out there is. Instead of
counting up, we could just as well count down (remember, B4 can subtract). So, we count
down the multiplicand and stop jumping when its value is down to zero. With this
approach, we only require one circuit, which can determine if a number is zero and
remember it. Our new and improved program would then look like something like this in
pseudo code.

Ok fantastic, this seems to work just fine. Let’s run an experiment in which we explore the
Zero Flag Latch.

Command Result
Value

Loop Counter Value

Set Loop Counter Value to 2 2

LOAD(0); 0 2

ADD(5); 5 2

Subtract 1 from the Loop Counter Value 5 1

Repeat the loop (JMP) if the value of the loop counter
is not 0

5 1

ADD(5); 10 1

Subtract 1 from the Loop Counter Value 10 0

Repeat the loop (JMP) if the value of the loop counter
is not 0

10 0

WRT(); 10 0

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 23

Modules Required: Program Counter, Control Unit, Variable.

Control Unit Jumper Settings: All Jumpers set.

We connect the Control Unit module to the Program Counter as shown below. We run a 1
pin wire from the !CLK+5 pin of the Program Counter to the corresponding !CLK+5 In pin
of the Control Unit module. We connect the output of the Variable to the Adder In port of
the Control Unit module. Don’t forget the power wires and we are ready to experiment.

Setup of Experiment 3

Here is how the Zero Flag Latch works. Every time the Enter button is pressed, the clock
signal rises to HIGH. At this time, the Zero Latch Flag looks at the input of the Latch In
port. If the value is B0000, then the Zero Flag LED will light up. For any value other than

� B4 Arithmetics Extension Study Guide, Revision 1.1.324

Zero Flag
Latch

USB

B0000, the LED will remain off. The Zero Flag Latch will remember the result of this
analysis until the next clock cycle when the process repeats.

Let’s now set the value of the Variable to B0001 and press the Enter button on the
Program Counter. We observe that the Zero Flag LED will remain off. Now change the
value of the Variable to B0000. The Zero Flag LED will remain off. Only when we press the
Enter button on the Program Counter will the Zero Flag LED turn on. If we then change the
value of the Variable to anything else than B000, for example, B1010, the LED will remain
on until we press the Enter button. The CLK signal will trigger a new analysis. Try this with
a couple more values to get a better feeling how the Zero Flag Latch works.

Internally the Zero Flag Latch consists mainly of an OR gate, a NOT gate and a Flip Flop.
As we remember from the B4 base kit handbook, the OR truth table is such that the output
is HIGH when one the input signals is HIGH. If we then negate the output, then it will be
HIGH when all the inputs of the OR gate are LOW. This is called a NOT-OR or, in short,
NOR gate. So a NOR gate will produce a HIGH output when all of its input is LOW. And
this is what we want. We then simply feed the output of our NOR gate to our Flip Flop to
remember the result. Here is an illustration !

Inside the Zero Flag Latch

The output of the Zero Flag Latch is an electrical signal which can be used to influence the
Program Counter in its conditional jumping. We will explore this in the coming chapters,
but first we have to upgrade the opcodes of the B4. We’ll do this in the next chapter.  

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 25

Experiment 4: A Multiplication Program

In experiment 1 we explored the challenge of building and programming a machine that is
capable of multiplying any two positive natural numbers within the scope of our 4-bit
computer architecture, which limits us to small numbers between 0 and 15. We determined
that loops were a fundamental challenge, which we explored in experiment 2. In
experiment 3 we generalised the loop concept further towards conditional loops, which
know when to stop. In this chapter, we want to extend the high-level programs from the
previous experiments and design a general purpose multiplication program. As we do this,
we revisit the opcodes of our computer, which, from now on we call the B4/A, where A
stands for arithmetics. We will soon see why it makes sense to distinguish the B4 and the
B4/A.

Here is an example of a general-purpose multiplication program in flowchart
representation:

Multiplication Program: High-Level Flowchart

If we look into this program a bit deeper from the perspective of the inner workings of a
computer that we are already familiar with, we obtain the following flowchart:

� B4 Arithmetics Extension Study Guide, Revision 1.1.326

The principle is that we load the
result variable from memory, add
the multiplicand to it and then write
it back into memory.

Then, we load the multiplier,
decrement it and also write it back
into memory

Then, we check if the multiplier is
zero. If not, we repeat the loop. If
yes, we print the result.

Multiplication Program: Detailed Flowchart

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 27

Let’s run this program, at least on paper for now until we have built the machine that can
do this. We have done this in the next table:

Table: Runtime of the 3x2 Program.

Let’s now decompose this into instructions to our machine that we want to build.
We begin with result=0, multiplier=3 and multiplicand=2.

Command Result
Value

Multiplier (Loop
Counter) Value

First Iteration

Load result 0 3

Add multiplicand to result 2 3

Store the result 2 3

Load multiplier 2 3

Subtract 1 from multiplier 2 2

Store the multiplier 2 2

Jump to step 0 if multiplier not zero 2 2

Second
Iteration

Load result 2 2

Add multiplicand to result 4 2

Store the result 4 2

Load multiplier 4 2

Subtract 1 from multiplier 4 1

Store the multiplier 4 1

Jump to step 0 if multiplier not zero 4 1

Third Iteration

Load result 4 1

Add multiplicand to result 6 1

Store the result 6 1

Load multiplier 6 1

Subtract 1 from multiplier 6 0

Store the multiplier 6 0

Jump to step 0 if multiplier not zero 6 0

� B4 Arithmetics Extension Study Guide, Revision 1.1.328

LOAD from address means that we want the data that is at that particular address. This is
like: “Give me the box on the top shelf”. So instead of saying what we want we say where
we want it from. So, LOAD from address B1111 means that we want the data that is stored
at address B1111 (decimal 15). That’s initially a 0. ADD from address B1101
correspondingly means that we want to add the data that is stored at address B1101
(decimal 13), which is a 2. In the same way, we can SUB from address or WRITE to
address. And this is extraordinarily handy, because now we can perform many operations
on a single piece of data, just by referencing it. This means that our opcode arsenal is
growing - which is good - because our computer gets more powerful. Here it is:

Data RAM Opcode Description

Step # 3 2 1 0

Step 15 0 0 0 0 result

Step 14 0 0 1 1 multiplier

Step 13 0 0 1 0 multiplicand

Step 12 0 0 0 1 constant (1)

Step 11

Step 10

Step 9

Step 8

Step 7

Step 6 0 0 0 0 JUMP if not zero Jump to step 0 if
multiplier not zero

Step 5 1 1 1 0 WRITE to address Store the multiplier

Step 4 1 1 0 0 SUB from address Subtract 1 from
multiplier

Step 3 1 1 1 0 LOAD from address Load multiplier

Step 2 1 1 1 1 WRITE to address Store the result

Step 1 1 1 0 1 ADD from address Add multiplicand to
result

Step 0 1 1 1 1 LOAD from address Load result

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 29

Expanded Opcode ‘Arsenal’

From Absolute Data to Data Pointers

In all our previous programs we have worked with absolute data. LOAD(3), ADD(7), and
SUB(2) loaded a three, added a seven or subtracted a two. This was all right for simple
addition and subtraction programs. However, absolute data is quite limiting when we want
to work with loops where we want to keep count of the number of times a loop has run
(iterations) and the computational result the loops is producing. This requires the reading
of data in one step, its change in a second step and the storage back into the data RAM in
a third step. When we work with absolute data, we can only read and write data into the
Data RAM address which corresponds to the value of the Program Counter. So we need a
way to read and write data from or to a particular address. And then we access data not by
referencing its value, but through its address instead.We explore this in the following
experiments.

Name Mnemonics Machine
Code

Set 2-to-1
Selector

Activate
Inverter

Set 2-to-1
Selector
of Data

RAM (PC
values)

Set
Program
Counter

Output
Latch

Load from
address LOAD_A 1111 1 1

Add from address ADD_A 1110 1
Subtract from

address SUB_A 1101 1 1

Store at address WRT_A 1100 1
Jump to address JMP 1011 1
Jump if not zero

to address JNZ 1010 1

Load (Absolute) LOAD 1001 1
Add (Absolute) ADD 1000

Subtract
(Absolute) SUB 0111 1

Print on Decimal
Display PRINT 0110 1

Do Nothing NOP 0000

� B4 Arithmetics Extension Study Guide, Revision 1.1.330

Experiment 5: Data Pointers

Modules Required: Program Counter, Control Unit, Data RAM, Latch, 2-to-1 Selector,
Variable

Control Unit Jumper Settings: All Jumpers set.

In the previous experiment, we laid the theoretical foundations for data pointers. In this
experiment, we want to find out how we actually make them with our hardware. With data
pointers we have a bit of a problem that comes in two parts:
1) The data pointer itself is stored in RAM, but the program has to know how to interpret

the data - that is, as an address, rather than a data value. So when the Data RAM
releases this address needs to be fed back to the Data RAM\'s Program Counter In
port (abbreviated as PC In). So, we need to cut the Data RAM loose from the Program
Counter and insert a 2-to-1 Selector between the Program Counter and the Data
RAM, so that we can choose at runtime, whether we want a data value or a data
pointer. And here is the second part of the problem:

2) When the Data RAM listens to itself, it forms a feedback loop.To solve this, we insert a
Latch between the output of the Data RAM and one of the inputs of the 2-to-1 Selector
is the solution.

address Value in
Binary

Data RAM
Content

address # 3 2 1 0 3 2 1 0

address 15 1 1 1 1 0 0 0 0

address 14 1 1 1 0 0 0 0 1

address 13 1 1 0 1 0 0 1 0

address 12 1 1 0 0 0 0 1 1

address 11 1 0 1 1 0 1 0 0

address 10 1 0 1 0 0 1 0 1

address 9 1 0 0 1 0 1 1 0

address 8 1 0 0 0 0 1 1 1

address 7 0 1 1 1 1 0 0 0

address 6 0 1 1 0 1 0 0 1

address 5 0 1 0 1 1 0 1 0

address 4 0 1 0 0 1 0 1 1

address 3 0 0 1 1 1 1 0 0

address 2 0 0 1 0 1 1 0 1

address #

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 31

All this is shown in the following figure.

�
Setup of Experiment 5

Connect the 2-to-1 Selector’s Select pin to GND. This way, the Data RAM will listen
to the Program Counter.

address 1 0 0 0 1 1 1 1 0

address 0 0 0 0 0 1 1 1 1

address Value in
Binary

Data RAM
Content

3 2 1 0 3 2 1 0address #

USB

� B4 Arithmetics Extension Study Guide, Revision 1.1.332

Next, program the Data RAM with the values from the table above. You would know how to
do this.

When you have done this, click the Enter button on the Program Counter repeatedly. You
should see the normal behaviour, that is, the Data RAM will show the value at the address
from the Program Counter. Did you notice that the Latch will always show the same output
as the Data RAM? We say that the Latch shadows the Data RAM.

Before you continue, Set the Program counter to step 1.

If you now move the Selector control wire from GND to +5V, what will happen? The 2-
to-1 Selector also displays B1110 on its output, which makes sense, because it now listens
to the Latch. The 2-to-1 Selector output is now the address to which the Data RAM listens,
and the Data RAM consequently displays the value, which is stored at address B1110,
which is B0001. Note that the output of the Latch does not change when you change the
Selector wire from GND to +5V. The Latch is breaking the circuit. It will only update its
value when it receives a signal from the Control Unit signal, and this signal is tightly
coupled to the Program Counter’s CLK signal which can only be generated when we press
the Enter button on the Program Counter module.

Move the selector wire to GND again, advance the Program Counter to address 2. The
Data RAM will display the value stored at this address, which is B1101. If you now connect
the Selector control wire from GND to +5V, then the 2-to-1 Selector also displays B1101
on its output. The 2-to-1 Selector output (coming straight from the Latch) is now the
address to which the Data RAM listens, and the Data RAM consequently displays the
value which is stored at address B1101, which is B0010.

By the way, did you notice that the Latch is a bit laggy? It is just a little bit behind the Data
RAM when it changes its output. You have to pay close attention to notice it. The reason
for this is, that the Latch CLK is delayed by a very long chain of delay circuits. We have
done this to ensure that the Latch does not latch onto the Data RAM output before the
Data RAM has done everything it needs to do to show the data value stored at the new
address. Clever timing, isn’t?

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 33

Experiment 6: Automating Data Pointers

Modules Required: Same modules as in experiment 6, plus Variable

Control Unit Jumper Settings: All Jumpers set.

Moving the control wire around to enable data pointers is not the way computers work in
practice. So in this experiment, we are using the Control Unit to send an activation signal
to the 2-to-1 selector instead. If you take a look at the Control Signal Output section on the
Control Unit, you will see that the pin at the very top is labelled as Data RAM’s 2-to-1
Selector.

Control Signal Output Pins on the Control Unit

Connect the Select control wire from the 2-to-1 Selector to this pin as shown in the
following figure. Whilst you are doing this, also wire up a second Variable as shown. We’ll
use it to generate some opcodes for this experiment.

If you kept the B4/A powered from the previous experiment then you already have the
Data RAM module filled with useful data. Otherwise, just program the Data RAM again as
shown in experiment 5.

� B4 Arithmetics Extension Study Guide, Revision 1.1.334

�
Setup of Experiment 6

In experiment 4, we talked about the extended opcode ‘arsenal’ of the B4/A. Here is the
opcode table again:

USB

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 35

Expanded Opcode ‘Arsenal’

Have a look at the highlighted region in the table. It says that the Data RAM’s 2-to-1
Selector is activated for the instructions Load from address, Add from address, Subtract
from address and Store at address. These instructions represent the Machine Codes
B1111, B1110, B1101 and B1100. In decimal, that’s the instructions 15, 14, 13 and 12.

Now, have a look at the Control Unit’s long horizontal row of LEDs:

Expanded Opcode ‘Arsenal’

These LEDs represent the Machine codes which we feed into the Program RAM In Port -
so they will ultimately come from the Program RAM - we’ll get to this a little later. So when
the machine code is B1000, then the LED 8 will lite up. For machine code B1111 LED 15
will lite up. Try this out by turning the knob of the second Variable you just added to your
setup.

Inside the Control Unit, we feed these values from the LEDs to some other circuity, but in
the case of the Data RAM’s 2-to-1 Selector, this is one OR and one AND Gate. The logical
expression is: If ((LED 15==1) OR (LED 14==1) OR (LED 13==1) OR (LED 12==1)) AND
(CLK==1) THEN activate the Data RAM’s 2-to-1 Selector.

Name Mnemonics Machine
Code

Set 2-to-1
Selector

Activate
Inverter

Set 2-to-1
Selector
of Data

RAM (PC
values)

Set
Program
Counter

Output
Latch

Load from
address LOAD_A 1111 1 1

Add from address ADD_A 1110 1
Subtract from

address SUB_A 1101 1 1

Store at address WRT_A 1100 1
Jump to address JMP 1011 1
Jump if not zero

to address JNZ 1010 1

Load (Absolute) LOAD 1001 1
Add (Absolute) ADD 1000

Subtract
(Absolute) SUB 0111 1

Print on Decimal
Display PRINT 0110 1

Do Nothing NOP 0000

� B4 Arithmetics Extension Study Guide, Revision 1.1.336

Inside the Control Unit: The Main Logic Gates that Activate the Data RAM’s 2-to-1 Selector

Program your data RAM with the values from the following table.

address Value in
Binary

Data RAM
Content

address # 3 2 1 0 3 2 1 0

address 15 1 1 1 1 0 1 1 1

address 14 1 1 1 0 0 1 0 1

address 13 1 1 0 1 0 0 1 1

address 12 1 1 0 0 0 0 0 1

address 11 1 0 1 1 0 0 0 0

address 10 1 0 1 0 0 0 0 0

address 9 1 0 0 1 0 0 0 0

address 8 1 0 0 0 0 0 0 0

address 7 0 1 1 1 0 0 0 0

address 6 0 1 1 0 0 0 0 0

address 5 0 1 0 1 0 0 0 0

address 4 0 1 0 0 1 1 1 1

address 3 0 0 1 1 1 1 1 0

address 2 0 0 1 0 1 1 0 1

address #

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 37

Run the experiment:

1. Reset the Program Counter to zero
2. Set the variable to a value of 12 or greater
3. Press the enter button on the Program Counter

The following steps happen very quickly in this order.

This clever little workflow uses the high and low part of the clock cycle quite effectively. It
first remembers an address and then goes and gets the value from this address. We will
see in later experiments that the value can be used for further computation, for example
for addition or subtraction.

Repeat the experiment
Repeat the experiment with the right variable set to a value less than 12. Observe and
note the exact steps and compare them with the previous observations. How many times
will the Latch latch ? With the variable set to a value less than 12, the Latch will only latch
once. That means it will treat data as a value, and not as an address. Hence, there is no
need to go and fetch the data from an address in memory.

We have just learned how a computer can fully automatically read data from memory.

If your experiment doesn’t work as described, check if you have wired the
experiment correctly. Most likely, you have connected the Control Unit’s !CLK+5
input not to !CLK+5 on the Program Counter, but to CLK+5 (without the exclamation
mark), which has inverted the CLK signal. That happened to us when we designed
the experiment - silly mistake :-)

address 1 0 0 0 1 1 1 0 0

address 0 0 0 0 0 1 1 1 1

address Value in
Binary

Data RAM
Content

3 2 1 0 3 2 1 0address #

The CLK signal from the Program Counter to the Control Unit flips

The value 1 is sent from the Program Counter to the 2-to-1 Selector, which passes it on to the Data RAM

The Data RAM looks up the value at address 1, which is 13 and presents it at its output

The Latch latches 13 and provides it to the 2-to-1 Selector

The Control Unit sends an activation signal to the 2-to-1 Selector which makes the Selector listen to the
Latch.

The 2-to-1 Selector provides the value 13 to the Data RAM

The Data RAM looks up the value at address 13, which is 3 and presents it at its output

The CLK signal from the Program Counter to the Control Unit flips back

The Latch latches and remembers the value 3 from the Data RAM.

� B4 Arithmetics Extension Study Guide, Revision 1.1.338

Experiment 7: Automating Loops

In experiment 2 we learned how to do jumps by influencing the Program Counter. We can
use the knowledge from experiment 5 to add another Latch to our B4/A and wire it up with
B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 39

US

the Control Unit so that we can do jumps without changing wires at runtime. The principle
is the same as in experiment 5: A Latch is inserted between the output of the Data RAM
and the Program Counter’s In port. The Latch then acts as a circuit breaker.

For this experiment, we extend the setup from experiment 6 with an additional Latch that
we place below the Program Counter as shown.

We then connect its CLK In Pin to CLK+8 and finally wire up the Program Counter’s Set
Program Counter pin to the Set Program Ctr pin of the Control Unit. We then connect the 1

Latch with power and finally connect the output of the Latch with the Program Counter’s In
port. From now on we refer to this latch as the Program Counter Latch or just the Jump-
Latch.The Jump-Latch remembers every output of the Data RAM.

Program the Data RAM with the program from Experiment 5.

Let’s look at our opcodes again. You can see that the Set Program Counter signal is sent
for the jump instructions JMP (that is the unconditional jump) and JNZ (the conditional
jump). These correspond to machine codes B1011 and B1010. We have highlighted them
in the table below.

Setup of Experiment 7

Name Mnemonics Machine
Code

Set 2-to-1
Selector

Activate
Inverter

Set 2-to-1
Selector
of Data

RAM (PC
values)

Set
Program
Counter

Output
Latch

Load from
address LOAD_A 1111 1 1

Add from address ADD_A 1110 1
Subtract from

address SUB_A 1101 1 1

Store at address WRT_A 1100 1
Jump to address JMP 1011 1
Jump if not zero

to address JNZ 1010 1

Load (Absolute) LOAD 1001 1
Add (Absolute) ADD 1000

Subtract
(Absolute) SUB 0111 1

Print on Decimal
Display PRINT 0110 1

Do Nothing NOP 0000

 Ctr=Counter1

� B4 Arithmetics Extension Study Guide, Revision 1.1.340

Experiment:

1. Set the right Variable to B0000
2. Press the Enter button on the Program Counter repeatedly until you get to position 6

(B0110). The Data RAM’s output should be B1001 and the same value should be in
the Jump-Latch.

3. Turn the knob on the right Variable up to B1010 (that’s the opcode for JNZ)
4. The Program Counter will jump to B1001 (decimal 9).
5. The Data RAM will display the value stored at position decimal 9, which is a B0110

(decimal 6)

You can try the experiment with the JMP opcode, but you will need to come down, rather
than up with the right Variable, starting at opcode B1111. This experiment looks as follows:

1. Set the right Variable to B1111
2. Press the Enter button on the Program Counter repeatedly until you get to position 6

(B0110). The Data RAM’s output should be B1001 and the same value should be in
the Jump-Latch.

3. Turn the knob on the right Variable down to B1010 (that’s the opcode for JMP)
4. The Program Counter will jump to B1001 (decimal 9).
5. The Data RAM will display the value stored at position decimal 9, which is a B0110

(decimal 6)

So in both cases we can prompt the Program Counter to jump to a new position. The
difference between the unconditional jump JMP and its conditional sister JNZ is how the
Set Program Ctr control signal is being generated. JMP will fire always when the machine
code is B1011 is present, whilst JNZ requires the machine code B1010 AND a passive
Zero Flag AND a CLK signal. Below you see the corresponding logic diagram. Have a go
and trace it.

The entire chain to generate the Set Program Counter control signal is encoded in
hardware with logic circuits inside the B4 Control Unit.

We have now reached the point at which we have learned everything that is in addition to
the B4 from the base kit. We are now ready to build a computer capable of multiplication
and division. Let’s get started. Turn over the page and start with experiment 8. 

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 41

Experiment 8: We are Building the B4/A

This will be our biggest build and we build on top of experiment 7. However, because of
the complexity of this experiment, we will do this step by step. We start by placing the
modules in front of us. We then connect the power wires. After that we connect the data
wires and finally the control wires. In Experiment 9, we will then write software for our
computer.

Contrary to the way we built the B4 before, we will move straight to the Automatic
Programmer and not use the Variables. Make sure you use the Automatic Programmer’s
extended version that came with this extension kit.

Also, we insert the Decimal Display into the setup so that we can more easily trace what’s
going on inside the Data RAM.

� B4 Arithmetics Extension Study Guide, Revision 1.1.342

Module Layout

�
Module Layout for Experiment 8

Data RAM acting as
Program RAM

Inverter

Adder

Latch2-to-1
Selector

Data
RAM

Program Counter Jump Latch

Automatic Programmer
(extended version)

Data
RAM
Latch

Decimal
Display

Data
RAM’s
2-to-1

Selector

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 43

Power Wiring

�
Setup of Experiment 8: Power Wiring only 

Inverter

Adder

Data
RAM

Program Counter Jump Latch

Automatic Programmer
(extended version)

Data
RAM
Latch

Decimal
Display

Data
RAM’s
2-to-1

Selector

Data RAM acting as
Program RAM

Latch2-to-1 Selector

� B4 Arithmetics Extension Study Guide, Revision 1.1.344

Data Wiring

�

Setup of Experiment 8: Data Wiring only

Control Wiring
In addition to the wiring shown below, apply the Control Unit wiring. Please go to https://
www.digital-technologies.institute/handbooks to download the Control Unit
Calibration document, which contains the exact jumper settings for your Control
Unit.

Data
RAM

Program Counter Jump Latch

Automatic Programmer
(extended version)

Data
RAM
Latch

Decimal
Display

Data
RAM’s
2-to-1

Selector

Latch

Data RAM acting as
Program RAM

2-to-1 Selector

Adder

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 45

https://www.digital-technologies.institute/handbooks
https://www.digital-technologies.institute/handbooks

�

Setup of Experiment 8: Control Wiring only

When you are done, your B4/A’s hardware is complete.Plug in a USB cable into the
Automatic Programmer and connect the other end to a computer. Check that the green
LEDs on all boards (except on the Automatic Programmer) are lit. If they are not, check the
power wiring.

Inverter

Adder

Data
RAM

Program Counter Jump Latch

Automatic Programmer
(extended version)

Data
RAM
Latch

Decimal
Display

Data
RAM’s
2-to-1

Selector

Latch

Data RAM acting as
Program RAM

2-to-1 Selector

� B4 Arithmetics Extension Study Guide, Revision 1.1.346

Experiment 9: Programming the B4/A
To Program the B4/A we first need to download and install the B4ArithmeticExtension
library from http://www.digital-technologies.institute/downloads into the Libraries folder in
which your Arduino Sketches reside. On Windows and Macintosh machines, the default
name of the folder is "Arduino/libraries" and is located in your Documents folder. Then, re-
start the Arduino IDE and go into the File menu. There, select Examples, and click on
B4ArithmeticExtension. This will look something like in the following figure:

B4/A Library inside the Arduino IDE

The Library already contains a number of programs. For each program, you find two
representations: One with the binary machine code arrays and a corresponding assembly
program. Both are totally equivalent. You can choose with which representation you want
to work with. In this chapter we use both representations: machine code and assembly
language.

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 47

http://www.digital-technologies.institute/downloads

Computing Multiplication

Arduino Multiplication Program to Compute 3 x 2

In the code above we have highlighted the parts that are in charge of the result, the
multiplicand and the multiplier. In the following table, you can see the B4/A part of that
program in our familiar table representation.

Machine Code Representation Assembly Code Representation

 #include <B4ArithmeticExtension.h>

B4 myB4;
/*
 * 3x2
 */

 uint8_t DataRAMContent[] = {
 B0000, B1111, B1101, B1111,
 B1110, B1100, B1110, B0000,
 B1111, B0000, B0000, B0000,
 B1111, B0010, B0011, B0000,
 };

 uint8_t ProgramRAMContent[] = {
 B0000, B1111, B1110, B1100,
 B1111, B1110, B1100, B1010,
 B1011, B0000, B0000, B0000,
 B0000, B0000, B0000, B0000,
 };

void setup()
{
 myB4.loadDataAndProgram(DataRAMContent,
ProgramRAMContent);
 myB4.programB4();
}

void loop()
{
}

 #include <B4ArithmeticExtension.h>

B4 myB4;
/*
 * 3x2
 */

String assemblyProgram =
"NOP(0);LOAD_A(15);ADD_A(13);WRT_A(15);LO
AD_A(14);SUB_A(12);WRT_A(14);JNZ(B0000);JM
P(15);NOP(0);NOP(0);NOP(0);NOP(1);NOP(2);NO
P(3);NOP(0);";

void setup()
{
 Serial.begin(9600);
 myB4.assembler(&assemblyProgram);
 myB4.programB4();
}

void loop()
{
}

� B4 Arithmetics Extension Study Guide, Revision 1.1.348

Let’s recap multiplication:

result=multiplicand x multiplier = series of
additions of: multiplier+multiplier +

multiplicand multiplier

result

3 x 2 Multiplication Program in Table Representation

We can also look at this program as a flowchart, which you can see in the next diagram.
You have already seen the flowcharts on the left and in the middle in previous chapters.
The flowchart on the right is more detailed and contains information about exactly which
memory addresses the program needs to work with.

Data RAM Opcode Description

address/Step
#

3 2 1 0

15 0 0 0 0 NOP result

14 0 0 1 1 NOP multiplier

13 0 0 1 0 NOP multiplicand

12 0 0 0 1 NOP constant

11 NOP not used

10 NOP not used

9 NOP not used

8 1 1 1 1 JUMP Jump to address 15 to
display the result

7 0 0 0 0 JUMP if not zero Jump to step 0 if multiplier
not zero

6 1 1 1 0 WRITE to
address

Store the multiplier at
address 14

5 1 1 0 0 SUB from
address

Subtract 1 (which is at
address 12) from multiplier

4 1 1 1 0 LOAD from
address

Load multiplier from
address 14

3 1 1 1 1 WRITE to
address

Store the result at address
15

2 1 1 0 1 ADD from
address

Add multiplicand to result

1 1 1 1 1 LOAD from
address

Load result from address
15

0 0 0 0 0 NOP Landing pad for the JNZ
instruction at step 7

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 49

�
3 x 2 Multiplication Program in Flowchart Representation

Question 9.1 Compute with your B4/A

?
1x1, 2x2, 3x3, 15x1

0x0. What do you observe? Explain the
limitations of this algorithm

4x4 What do you observe? How can the
result be explained?

� B4 Arithmetics Extension Study Guide, Revision 1.1.350

Computing Division

Just like multiplication is a series of additions, so is division a series of subtractions. We subtract
the divisor from the dividend repeatedly until the dividend is zero. We count the number of
subtractions in the result variable. Let’s try 8 divided by 2. We compute 8-2-2-2-2=0. That’s 4
subtractions, so the result of 8/2 is 4. Let’s look at this algorithm in a flowchart. On the left, we have
a high-level representation, which is becoming more detailed in the middle and on the right.

15/3 Division Program in Flowchart Representation

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 51

Let’s recap division:

result=dividend / divisor = series of subtractions
of: dividend - divisor - divisor -

Arduino Division Program to Compute 15 / 3

In the code above we have highlighted the parts that are in charge of the result, the divisor
and the dividend. In the following table, you can see the B4/A part of that program in our
familiar table representation.

Machine Code Representation Assembly Code Representation

 #include <B4ArithmeticExtension.h>

B4 myB4;
/*
 * 15/3 division
 */

 uint8_t DataRAMContent[] = {
 B0000, B1111, B1100, B1111,
 B1101, B1110, B1101, B0000,
 B0000, B0000, B0000, B0000,
 B0001, B1111, B0011, B0000,
 };

 uint8_t ProgramRAMContent[] = {
 B0000, B1111, B1110, B1100,
 B1111, B1101, B1100, B1010,
 B0000, B0000, B0000, B0000,
 B0000, B0000, B0000, B0000,
 };

void setup()
{
myB4.loadDataAndProgram(DataRAMContent,
ProgramRAMContent);
 myB4.programB4();
}

void loop()
{
}

 #include <B4ArithmeticExtension.h>

B4 myB4;
/*
 * 15/3
 */

String assemblyProgram =
"NOP(0);LOAD_A(15);ADD_A(12);WRT_A(15);LO
AD_A(13);SUB_A(14);WRT_A(13);JNZ(B0000);JM
P(15);NOP(0);NOP(0);NOP(0);NOP(1);NOP(15);N
OP(3);NOP(0);";

void setup()
{
 Serial.begin(9600);
 myB4.assembler(&assemblyProgram);
 myB4.programB4();
}

void loop()
{
}

Data RAM Opcode Description

address/Step
#

3 2 1 0

15 0 0 0 0 NOP result

14 0 0 1 1 NOP divisor

13 1 1 1 1 NOP dividend

12 0 0 0 1 NOP constant

11 NOP not used

10 NOP not used

address/Step
#

� B4 Arithmetics Extension Study Guide, Revision 1.1.352

divisor dividend

result

15/3 Division Program in Table Representation

We can also look at this program as a flowchart, which you can see in the next diagram.
You have already seen the two flowcharts on the left and in the middle in previous
chapters. The flowchart on the right is more detailed and contains information about
exactly which memory addresses the program wants to work with.

9 NOP not used

8 1 1 1 1 JUMP Jump to address 15 to
display the result

7 0 0 0 0 JUMP if not zero Jump to step 0 if dividend
not zero

6 1 1 1 0 WRITE to
address

Store the dividend at
address 13

5 1 1 0 0 SUB from
address

Subtract divisor (which is
at address 14) from
dividend

4 1 1 1 0 LOAD from
address

Load dividend from
address 13

3 1 1 1 1 WRITE to
address

Store the result at address
15

2 1 1 0 1 ADD from
address

Add constant from address
12 to result

1 1 1 1 1 LOAD from
address

Load result from address
15

0 0 0 0 0 NOP Landing pad for the JNZ
instruction at step 7

Data RAM Opcode Description

3 2 1 0address/Step
#

Question 9.2 Compute with your B4/A

?
4/2, 4/4, 10/1

4/3. What do you observe? Explain the
limitations of this algorithm

4/0 What do you observe? How can the
result be explained?

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 53

Computing Averages

To compute the average of two numbers a and b, we first add a and b and then divide the
result by two: average = (a+b)/2.

This means we can re-use our familiar division program from the precious section to which
we add three steps to the beginning of the program.

1. Load the first number,
2. add the second number
3. store the result of the addition into memory (address 13) where the dividend is.

We then update the jump address of JNZ from 0 to 3, because we added three instructions
to the beginning of the program

Arduino Division Program to Compute (6+8) / 2

In the code above we have highlighted the parts that are in charge of the result, the divisor
and the dividend. This looks a lot like our familiar division program, which has been
extended by LOAD(6);ADD(8);WRT_A(13). This computes the dividend (14), that we then
divide by 2. In the following table, you can see the B4/A part of that program in our familiar
table representation.

Machine Code Representation Assembly Code Representation

 #include <B4ArithmeticExtension.h>

B4 myB4;
/*
 * (6+8)/2
 */
 uint8_t DataRAMContent[] = {
 B0110, B1000, B1101, B0000,
 B1111, B1100, B1111, B1101,
 B1110, B1101, B0011, B1111,
 B0001, B0000, B0010, B0000,
 };

 uint8_t ProgramRAMContent[] = {
 B1001, B1000, B1100, B0000,
 B1111, B1110, B1100, B1111,
 B1101, B1100, B1010, B1011,
 B0000, B0000, B0000, B0000,
 };

void setup()
{
 myB4.loadDataAndProgram(DataRAMContent,
ProgramRAMContent);
 myB4.programB4();
}

void loop()
{
}

 #include <B4ArithmeticExtension.h>

B4 myB4;
/*
 * (6+8)/2
 */
String assemblyProgram =
"LOAD(6);ADD(8);WRT_A(13);NOP(0);LOAD_A(15
);ADD_A(12);WRT_A(15);LOAD_A(13);SUB_A(14);
WRT_A(13);JNZ(3);JMP(15);NOP(1);NOP(0);NOP(
2);NOP(0);";

void setup()
{
 Serial.begin(9600);
 myB4.assembler(&assemblyProgram);
 myB4.programB4();
}

void loop()
{
}

� B4 Arithmetics Extension Study Guide, Revision 1.1.354

divisor dividend

result

(6 + 8) / 2 Average Program in Table Representation

We can also look at this program as a flowchart, which you can see in the next diagram.
You have already seen the two flowcharts on the left and in the middle in previous
chapters. The flowchart on the right is more detailed and contains information about
exactly which memory addresses the program wants to work with.

Data RAM Opcode Description

address/Step
#

3 2 1 0

15 0 0 0 0 NOP result

14 0 0 1 0 NOP divisor

13 0 0 0 0 NOP dividend

12 0 0 0 1 NOP constant

11 1 1 1 1 JMP Jump to address 15 to
display the result

10 0 0 1 1 JNZ Jump to step 3 if dividend
not zero

9 1 1 1 0 WRT_A Store the dividend at
address 13

8 1 1 0 0 SUB _A Subtract divisor (which is
at address 14) from
dividend

7 1 1 1 0 LOAD_A Load dividend from
address 13

6 1 1 1 1 WRT_A Store the result at address
15

5 1 1 0 1 ADD_A Add constant from address
12 to result

4 1 1 1 1 LOAD_A Load result from address
15

3 0 0 0 0 NOP Landing pad for the JNZ
instruction at step 10

2 1 1 1 0 WRT_A Store the dividend at
address 13

1 1 0 0 0 ADD Add the second number

0 0 1 1 0 LOAD Load the first number

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 55

(6 + 8) / 2 Average Program in Flowchart Representation

Question 9.3 Compute with your B4/A

?
(7+5)/2, (4+2)/2

(5+2)/2 What do you observe? Explain the
limitations of this algorithm

(8+8)/2 What do you observe? How can
the result be explained?

� B4 Arithmetics Extension Study Guide, Revision 1.1.356

Experiment 10: Print()

To this point, we have been using programs that produced a single result, such as a
multiplication or a division. The Decimal Display showed anything that happened in the
Data RAM module. That was fine for as long as we knew the program well and knew at
which step the final result was shown. In our programs that was at program step 15.

But what if we want to perform a sequence of calculations, such as Fibonacci numbers?
We will talk about Fibonacci in the next section, but what you need to know is that a new
Fibonacci number is computed every time a loop executes. So we need a way to print just
the Fibonacci number to the Decimal Display once per loop. This will make the operation
of our computer much more user friendly. All the user needs to do is to press the Enter
button repeatedly (or use the Automatic mode) and watch the display.

For this, we need to slightly re-design the B4/A. We re-use the design from the previous
experiment. We relocate the Decimal Display and add a Decimal Display Latch. The
Data RAM Latch moves where the Decimal Display was previously. We also add the
Splitter module.

The following Figures illustrate the changes to the setup from the previous experiment.

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 57

�

Setup of Experiment 9: Modified Module Arrangement

The Splitter module is required because the Latch does only have 3 outputs. However, for
this experiment we need four outputs.

Data RAM acting as
Program RAM

Inverter

Adder

Latch2-to-1 Selector

Data
RAM

Program Counter Jump Latch

Automatic
Programmer

Data
RAM
Latch

Decimal Display

Data
RAM’s
2-to-1

Selecto

Decimal Display Latch

� B4 Arithmetics Extension Study Guide, Revision 1.1.358

�

Setup of Experiment 9: Modified Power Wiring only

Data RAM acting as
Program RAM

Inverter

Adder

Latch2-to-1 Selector

Data
RAM

Program Counter Jump Latch

Automatic
Programmer

Data
RAM
Latch

Decimal Display

Data
RAM’s
2-to-1

Selecto

Decimal Display Latch

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 59

�

Setup of Experiment 9: Modified Data Wiring only

Data RAM acting as
Program RAM

Inverter

Adder

Latch2-to-1 Selector

Data
RAM

Program Counter Jump Latch

Automatic
Programmer

Data
RAM
Latch

Decimal Display

Data
RAM’s
2-to-1

Selecto

Decimal Display Latch

� B4 Arithmetics Extension Study Guide, Revision 1.1.360

�

Setup of Experiment 9: Modified Control Wiring only

Note that a single control wire goes from the Decimal Display latch to the 7th opcode pin
from the right. The opcode for the Print command is therefore B0110.

Data RAM acting as
Program RAM

Inverter

Adder

Latch2-to-1 Selector

Data
RAM

Program Counter Jump Latch

Automatic
Programmer

Data
RAM
Latch

Decimal Display

Data
RAM’s
2-to-1

Selecto

Decimal Display Latch

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 61

Computing Fibonacci Numbers

The Fibonacci sequence is a series of numbers where a number is found by adding up the
two numbers before it. Starting with 0 and 1, the sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21,
34, They appear unexpectedly often in mathematics and in nature, from sunflowers to
hurricanes to galaxies. Sunflowers seeds are arranged in a Fibonacci spiral, keeping the
seeds uniformly distributed no matter how large the seed head may be. So Fibonacci
numbers represent some applied mathematics.

Calculating Fibonacci numbers is rather straightforward with our B4/A. All we have to do is
to start with 0 and 1 and the next Fibonacci number is the sum of its two predecessors. So,
1+2=3, 2+3=5, 3+5=8 and so forth. With our 4 bit architecture, we should be able to
compute the first eight Fibonacci numbers from 0 to 13.

Let’s look at this algorithm in a Flowchart:

Fibonacci Program in Flowchart Representation
� B4 Arithmetics Extension Study Guide, Revision 1.1.362

Let’s start with the left hand side, which is a more pseudo-code style flowchart. We begin
by setting the loop_counter variable to 7 (because we want to compute the first eight
Fibonacci numbers). We then initialise the two variables first_number to 0 and
second_number to 1. We then print first_number. As you will see, at the beginning of
each loop, second_number will always contain the Fibonacci_number. We then
compute the total of first_number+second_number. first_number then remembers the
value of second_number and second_number remembers the total. Finally, we decrement
the loop_counter and check if we need to continue looping. That’s all.

Sounds simple. Let’s desk-check this code with a table:

Command first_number second_number total

First
Iteration

total=first_number+second_nu
mber

0 1 1

print second_number 0 1 1

first_number=second_number 1 1 1

second_number=total 1 1 1

Second
Iteration

total=first_number+second_nu
mber

1 1 2

print second_number 1 1 2

first_number=second_number 1 1 2

second_number=total 1 2 2

Third
Iteration

total=first_number+second_nu
mber

1 2 3

print second_number 1 2 3

first_number=second_number 2 2 3

second_number=total 2 3 3

Fourth
Iteration

total=first_number+second_nu
mber

2 3 5

print second_number 2 3 5

first_number=second_number 3 3 5

second_number=total 3 5 5

Fifth
Iteration

total=first_number+second_nu
mber

3 5 8

print second_number 3 5 8

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 63

You see the grey fields contain the Fibonacci number. In the seventh iteration, our B4/A
reaches the limits of its 4 bit architecture, but we still get the final Fibonacci number (13).

Arduino Fibonacci Program

In the following table, you can see the B4/A part of that program in our familiar
representation.

Iteration
first_number=second_number 5 5 8

second_number=total 5 8 8

Sixth
Iteration

total=first_number+second_nu
mber

5 8 13

print second_number 5 8 13

first_number=second_number 8 8 13

second_number=total 8 13 8

Seventh
Iteration

total=first_number+second_nu
mber

8 13 21(5 in
the B4)

print second_number 8 13 8

first_number=second_number 13 13 5

second_number=total 13 5 5

Command first_number second_number total

Assembly Code Representation

#include <B4ArithmeticExtension.h>

B4 myB4;
/*
 * Fibonacci
 */
String assemblyProgram =
"LOAD_A(13);ADD_A(14);WRT_A(15);LOAD_A(14);PRINT();WRT_A(13);LOAD_A(15);WRT_A(14);LOA
D_A(12);SUB(1);WRT_A(12);JNZ(15);NOP(7);NOP(0);NOP(1);NOP(0);";

void setup()
{
 Serial.begin(9600);
 myB4.assembler(&assemblyProgram);
 myB4.programB4();
}

void loop()
{
}

� B4 Arithmetics Extension Study Guide, Revision 1.1.364

(6 + 8) / 2 Average Program in Table Representation

Loading and Running the Program

Load the program into the B4/A and run it. You will see that the Decimal Display will show the
sequence 1,1,2,3,5,8,18. Because we can’t automatically reset the Decimal Display Latch it is
possible that the initial value on the Display is not 0. In this case, you can manually reset the
Decimal Display Latch with a 1-pin wire.

Data RAM Opcode Description

address/Step
#

3 2 1 0

15 0 0 0 0 NOP total

14 0 0 0 1 NOP second_number

13 0 0 0 0 NOP first_number (Fibonacci Number)

12 0 1 1 1 NOP loop_counter

11 1 1 1 1 JNZ Jump if loop_counter not zero

10 1 1 0 0 WRT_A Store the loop_counter at address
12

9 0 0 0 1 SUB Decrement loop_counter by 1

8 1 1 0 0 LOAD_A Load loop_counter from address 12

7 1 1 1 0 WRT_A Store second_number at address
14

6 1 1 1 1 LOAD_A Load total from address 15

5 1 1 0 1 WRT_A Store first_number at address 13

4 0 0 0 0 PRINT Print the Fibonacci Number on the
Decimal Display

3 1 1 1 0 LOAD_A Add second_number from address
14

2 1 1 1 1 WRT_A Store the total at address 15

1 1 1 1 0 ADD_A Add second_number from address
14

0 1 1 0 1 LOAD_A Load first_number from address 13

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 65

Summary and Conclusions
In this course we have learned how computers apply algorithms to compute any maths
that is not addition or subtractions. We have seen how loops allow for repeat addition
leading to multiplication. Repeat subtraction is division. By combining these concepts we
can teach computers to compute averages and even Fibonacci numbers.

We have also learned that we cannot just mutate (change) code to make the computer do
these things, we also had to significantly upgrade its hardware to physically enable it to
meaningfully execute the new code.

You now know more about the inner workings of computer processors than most people
on this planet. Keep up the good work and keep pushing forward.

Further Reading
Below, we have listed some really good resources that we used during the design of the
B4. We very much recommend reading them.

Charles Petzold, CODE The Hidden Language of Computer Hardware and Software, 1999
http://www.charlespetzold.com/code/
Fibonacci Numbers: https://en.wikipedia.org/wiki/Fibonacci_number

� B4 Arithmetics Extension Study Guide, Revision 1.1.366

Challenge

Just like multiplication is a series of additions, so is power a series of multiplications.
And we already know that the B4/A can perform multiplication. All we need to to is to
repeat multiplications. Let’s look at two examples:

53 = 5x5x5 = (5+5+5+5+5)*5 = (5+5+5+5+5) + (5+5+5+5+5) + (5+5+5+5+5) +
(5+5+5+5+5) + (5+5+5+5+5)

In the above example, we compute 5x5 and add the result to itself 4 times.

23 = 2x2x2 = (2+2)x2 = (2+2) + (2+2)

Here, we compute 2x2 and add the result to itself 1 time.

Can you design and implement an algorithm that computes the the power of
two numbers? For example 23?

http://www.charlespetzold.com/code/
https://en.wikipedia.org/wiki/Fibonacci_number

Appendix A: Programming Table Template.
You can photocopy this table and then use it to design and document your own programs
for the B4.

Data RAM Program RAM Description

Step # 3 2 1 0 3 2 1 0 Opcode

Step 15

Step 14

Step 13

Step 12

Step 11

Step 10

Step 9

Step 8

Step 7

Step 6

Step 5

Step 4

Step 3

Step 2

Step 1

Step 0

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 67

Appendix B: Solutions

Question 2.1 Solution

?
What was the reason for leaving
the 1 pin wire from the Program
RAM’s port D to the Program
Counter’s Set Program Counter
disconnected during the
programming phase?

If we left it connected during the
programming phase, then, the
Program Counter would be
influenced by the Program RAM,
which would lead to an incorrect
storage of program instructions.

What would have happened if we
had not disconnected the wire.
Explain your thinking and
conduct an experiment to verify
it.

Question 9.1 Compute with your B4/A Solution

?
1x1, 2x2, 3x3, 15x1

0x0. What do you observe?
Explain the limitations of this
algorithm

Our algorithm first decrements
the dividend and then checks if it
is zero. In the case of a zero
dividend, the subtraction by 1
would lead to 15 and the loop
would run another 15 times
before it eventually reaches 0

4x4 What do you observe? How
can the result be explained?

4x4 = 16, which is B10000, or
B0000 in a 4-bit architecture

� B4 Arithmetics Extension Study Guide, Revision 1.1.368

Question 9.2 Compute with your B4/A Solution

?
4/2, 4/4, 10/1

4/3. What do you observe?
Explain the limitations of this
algorithm

4 cannot be divided by 3 without
rest. Our algorithm relies on a 0
to end the loop. But 4-3 is 1 and
1-3 is -2, which is 14 in a 4-bit
architecture. Our algorithm will
produce the wrong result.

4/0 What do you observe? How
can the result be explained?

Our algorithm first decrements
the dividend and then checks if it
is zero. In the case of a zero
dividend, the subtraction by 1
would lead to 15 and the loop
would run another 15 times
before it eventually reaches 0

Question 9.3 Compute with your B4/A Solution

?
(7+5)/2, (4+2)/2 6, 3.

(5+2)/2 What do you observe?
Explain the limitations of this
algorithm

7 cannot be divided by 2 without
rest. Our algorithm relies on a 0
to end the loop. But 7-2 is 5, then
5-2=3 and 2-2=1. Finally, 1-2 is
-1, which is 15 in a 4-bit
architecture. Our algorithm will
produce the wrong result.

(8+8)/2 What do you observe?
How can the result be
explained?

8+8 is 16, which is B0000 in a 4-
bit architecture. Our algorithm
will try to compute 0/2, which is,
surprisingly 8. This is because of
the nature of our algorithm,
which first computes dividend-
divisor. So, the first operation will
be 0-2, which is 14 in a 4 bit
architecture. The loop runs 8
times.

B4 Arithmetics Extension Study Guide, Revision 1.1.3 � 69

Appendix C: Quick Reference Guide
Name Mnemonics Machine

Code
Set 2-to-1
Selector

Activate
Inverter

Set 2-to-1
Selector
of Data

RAM (PC
values)

Set
Program
Counter

Output
Latch

Load from
address LOAD_A 1111 1 1

Add from address ADD_A 1110 1
Subtract from

address SUB_A 1101 1 1

Store at address WRT_A 1100 1
Jump to address JMP 1011 1
Jump if not zero

to address JNZ 1010 1

Load (Absolute) LOAD 1001 1
Add (Absolute) ADD 1000

Subtract
(Absolute) SUB 0111 1

Print on Decimal
Display PRINT 0110 1

Do Nothing NOP 0000

� B4 Arithmetics Extension Study Guide, Revision 1.1.370

	Included Parts
	Welcome back, Parents and Teachers
	Welcome back, Students
	B4’s Arithmetics Extension Kit Parts
	Core Modules
	Helper Module
	Please look after me
	About Numbers
	A Word about Power
	Experiments
	Overview
	Experiment 1: Multiplication - Exploring the Challenge
	Experiment 2: Loops
	In Summary
	Questions
	Experiment 3: Knowing When to Stop
	Experiment 4: A Multiplication Program
	From Absolute Data to Data Pointers
	Experiment 5: Data Pointers
	Experiment 6: Automating Data Pointers
	Experiment 7: Automating Loops
	Experiment 8: We are Building the B4/A
	Module Layout
	Power Wiring
	Data Wiring
	Control Wiring
	Experiment 9: Programming the B4/A
	Computing Multiplication
	Computing Division
	Computing Averages
	Experiment 10: Print()
	Computing Fibonacci Numbers
	Loading and Running the Program
	Summary and Conclusions
	Further Reading
	Appendix A: Programming Table Template.
	Appendix B: Solutions
	Appendix C: Quick Reference Guide

