
Digital Technologies Institute

B4

The comprehensive,
modern, experimentation-
based course unlocks the
fascinating world of Digital

Technologies.

Computer
Processor

Kit
0010
0000
0001
1000

“What I was proud of was that I used very few parts to
build a computer that could actually speak words on a

screen and type words on a keyboard and run a
programming language that could play games. And I did

all this myself.”

(Steve Wozniak)

2! B4 Study Guide, Revision 1.4.3

Table of Contents

...Included Parts ! 6

...Hello Parents and Teachers ! 7

...Hello Students! 7

..B4’s Parts! 7

...Core Modules! 9

..Helper Modules! 11

...Wires and Connectors! 13

..A Word about Power! 14

..Please look after me! 14

..Exploration through Experimentation! 15

..Experiments! 16

...Overview! 16

..Experiment 1: One Small Step ...! 18

...Experiment 2: Adding Two Numbers! 22

..Experiment 3: What about Subtraction?! 25

...Experiment 4: Short Term Memory! 28

...Experiment 5: Long Term Memory! 33

...Experiment 6: Giving Direction to Data! 37

......................................Experiment 7a: Let’s Build a Manual Computer, Part 1! 39

......................................Experiment 7b: Let’s Build a Manual Computer, Part 2! 48

..Experiment 8: Let’s Make a Real Computer! 53

...B4 Design! 53

..B4 Assembly! 56

...Experiment 9: Programming the B4! 62

..Programming the Program RAM! 62

B4 Study Guide, Revision 1.4.3! 3

...Programming the Data RAM! 63

...Executing the Program! 65

..Experiment 10: B4 Learns Subtraction! 66

...Designing the Program! 66

..Running the Program! 67

...Experiment 11: Automatic Programming! 68

..Step 1 Installing the Automatic Programmer! 68

...Step 2: Modules and their Wiring! 69

.....................................Step 3: Installing and Configuring the Arduino IDE! 72

...Step 4: Installing the Arduino Library! 73

..Experiment 12: Program Language Design! 78

...Simplifying our Program! 81

..Summary! 82

...Experiment 13: On the Role of Timing! 83

............................Experiment 14: So, how does a Computer work ... actually?! 84

..Logic and Boolean Logic! 84

..A Logical Adding Machine! 86

..A Logical Memory Machine! 89

..Engineering! 93

..Summary! 97

..Further Reading! 98

..Troubleshooting! 98

...Appendix A: Programming Table Template ! 99

...Appendix B: Fun Algorithms! 100

...Appendix C: Solutions! 101

..Appendix D: Extension Kits ! 109

..Appendix E: Quick Reference Guide ! 110

4! B4 Study Guide, Revision 1.4.3

Safety instructions

The B4 operates on 5 Volts and only draws a few milliamperes. Nevertheless, it is an
electrical device and should be handled as such. We recommend to treat it with care, and
to keep it on a non-conductive, dry and level surface. Do not scratch the surface of the
printed circuit boards with sharp or metallic instruments, as this might damage the wires.

Acknowledgements

We would like to thank Charles Petzold, the author of ‘Code: The Hidden Language of
Computer Hardware and Software’, published in 1999. His book has both inspired and
guided the design of the B4. We recommend it as additional reading material for students.

We would further like thank Henrik Maier from proconX for his guidance and feedback on
the electrical engineering design, fabrication and component selection, which has been
invaluable to transforming the B4 from a breadboard prototype to a robust design that can
be used in the classroom.

Special thanks to Dr. Hayden White for his support and input which have been invaluable
to get the B4 off the ground. His regular feedback on the development of the B4 has
influenced many of the design decisions.

A big thank you is owed to Martin Levins, Katie Woolston and Michael Schulz for their
contributions to this handbook. David Schulz has contributed code that drives the seven
segment LEDs of the Program Counter and the Decimal Display. He originally developed
this for his Young ICT Explorers project, The Tardis, in 2016. We’d further like to thank the
Arduino community: Two of the B4’s modules deploy an Atmega processor which run
Arduino programs. Keep up the great work!

Mrs. Sharon Singh and her year 8 students (8N and 8W) at St. John’s Anglican College in
Forest Lake, QLD, have provided very valuable feedback on the B4 and this handbook,
which has lead to many improvements. Thank you!

The logic diagrams in this handbook have been designed using the Logicly program. We
think it is a great tool to quickly draw and test Boolean logic problems.

Dr. Karsten Schulz, CEO, The Digital Technologies Institute.

WARNING:
CHOKING HAZARD - Small Parts
Not for children under 3 years.
PHOTOSENSITIVE EPILEPSY -
Some of the experiments produce
light flashes that can potentially
trigger seizures in people with
photosensitive epilepsy

B4 Study Guide, Revision 1.4.3! 5

!

Included Parts
1x 2-Line-to-1-Line Selector
1x Adder
1x Automatic Programmer Arduino Shield
1x Data Random Access Memory, 16x4bit
1x Decimal Display
1x Inverter
1x Latch
2x Variable
1x Program Counter
1x Program Random Access Memory, 16x4bit

14 x 4 Pin Wires
10 x 2 Pin Wires
11 x 1 Pin Wires
1x USB Cable

1x Printed Student Handbook
1x B4 Arduino Library (available for download at http://www.digital-technologies.institute/
downloads)

1x Arduino Uno compatible (required for the full function of the Automatic Programmer
Arduino Shield)

Power Consumption:
5V, 200mA (average), 1W DC.

This product complies with the Restriction of Hazardous Substances Directive and is lead
free.

The illustrations in this handbook can slightly differ from the actual modules. However, the
functionality is the same.

This handbook has been made with great care. Should you find errors or have ideas to
improve it, please email us at enquiries@digital-technologies.institute.

Designed and manufactured in Australia
(c) Digital Technologies Institute PTY LTD, 2016-18 AD. All rights reserved.

6! B4 Study Guide, Revision 1.4.3

mailto:enquiries@digital-technologies.institute
mailto:enquiries@digital-technologies.institute

Hello Parents and Teachers
The B4 is an educational computer made to help students explore the fundamental
operation of computers. It has been designed from the ground up to support students who
are studying the new Australian Curriculum: Digital Technologies. The B4 supports the
teaching of the knowledge and understanding of digital systems and the representation of
data. The B4’s design goes back to the time in the 1970‘s when early digital computers
emerged. It follows similar design principles as some of the famous classic computers,
such as the Apple I, the Altair 8800, or the Z-80. These principles are still valid today in
modern computers, smartphones and tablet. The B4 illustrates these principles and
combines them with modern 21st century Arduino technology to let students, parents and
teachers explore the magic of making a computer without needing a university degree.

Hello Students
Many years ago, when our grandparents were young, computers were big - bigger than
our bedrooms. Their parts were also quite big and you could hear and see them working,
or computing as we say. Modern computers have become very tightly integrated and now
fit into the pockets of our pants. But this means that their parts have become so small that
we can hardly see them, and even less distinguish them with our own eyes. Therefore, the
B4 has bigger components that you can easily see. Whereas the speed of modern
computers is measured in millions of instructions per second (MIPS) the B4 operates at
human speed, thus allowing us to see with our own eyes how data flows between each of
the B4’s modules.

The B4 is a 4 bit Harvard-architecture-style microprocessor. It can store and process
numbers and instructions that are 4 bits long, meaning that it can work with positive
numbers from 0 to 15. It has one data storage and one program storage module. Each of
them can hold 16 of these 4 bit numbers.

This may not sound like much, because you are probably used to 64 bit computers with
gigabytes of memory. But the B4 is not meant to compete with these computers. It is
simple enough to teach Digital Technologies fundamentals. Still, you will be surprised what
can be done with a 4bit computer.

Now let’s see what’s in the box:

B4’s Parts
The B4 consists of seven different modules which represent the most important parts of a
Computer’s Central Processing Unit (CPU) and Memory, plus four helper modules for
programming and data conversion. The B4 can be programmed manually step by step,
which is useful to learn coding in detail. For convenience, and to aid with the repetition and
expansion of experiments, the B4 also has an Automatic Programmer, which requires an
Arduino Uno or compatible.

Generally, each module receives its input through the connectors at the lower end of the
module and provides an output through the connectors at the top. All connectors are
labeled with In or Out.

B4 Study Guide, Revision 1.4.3! 7

We can further classify the B4 modules into control, arithmetic, memory & storage,
programming and miscellaneous. All modules within a category are of the same colour.
The control modules are blue and the arithmetic modules yellow. Anything to do with
memory & storage is green. The programming modules are red and anything else is black.

Function Color Modules

Core Modules Control blue Program Counter, 2-to-1
Selector

Core Modules

Arithmetic yellow Adder, Inverter

Core Modules

Memory & Storage green Data RAM, Program RAM, Latch

Helper Modules Programming red Variables, Automatic
Programmer

Helper Modules

Miscellaneous black Decimal Display

The modules are all labeled. Take them out of the box and find each of the modules as we
describe them below. Let’s start with the core modules:

Input

Output

8! B4 Study Guide, Revision 1.4.3

Core Modules

The Program Counter’s main function is to count from 0 to 15. Every time you press the
Enter button, the number on the display will grow by one. When it shows 15 and you press
the button, the counter will tick over and start at 0 again. This number is important for the
Data and Program RAM modules so that they know which step of the program they should
be working on and where the corresponding data is located. Every time you press the
Enter button, the Program Counter will also send a clock (abbreviated as CLK) signal to
some of the other modules. We will talk about this later. The program Counter also has a
Reset button, which resets the output to 0.

The 2-to-1 Selector is a switch that can
change the data paths in our computer.
Precisely, it is used to select data from the
Data RAM or from the Adder. This is
important when adding two numbers, as we
will see later.

The Data Random Access Memory (RAM)
holds the data that the program is working on.
For example, it would hold two numbers that the
program will be adding. The Data RAM has room
for 16 numbers, which are 4 bit wide, thus
representing the decimal numbers of 0 to 15. The
Data RAM is a 16 by 4, or 16x4, memory
module.

B4 Study Guide, Revision 1.4.3! 9

The Program Random Access Memory
(RAM) holds the program that manipulates
the data. For example, it would contain the
information so that two numbers from the
Data RAM would get subtracted, or that the
result of an operation be stored back into the
RAM. You will see later that a program is
quite different to what you think it is. Like the
Data RAM the Program RAM has room for 16
instructions, which are 4 bit wide, thus
representing the numbers 0 to 15. Therefore,
the Program RAM is also a 16 by 4, or 16x4,
memory module.

A Latch has the function of short-term memory in
a computer. It stores (or ‘buffers’) some data
before that data can be further processed. For
example, in the B4, the Latch stores the first
number so that a second number can be added
to it.

The Adder can add exactly two numbers.

10! B4 Study Guide, Revision 1.4.3

The Inverter’s function is to help the Adder to
subtract numbers. In the binary world,
subtracting is the same thing as adding the
binary complement, and then adding 1 to the
result.

Helper Modules

With the Variable we can produce binary
data simply by rotating the knob. You can
think of it as a variable in a computer
program. With its button we store data and
program code in the Data and Program RAM
modules. The B4 ships with two Variable
modules. The knob of the Variable was made
on a 3D printer.

The Automatic Programmer is the Variable’s
bigger brother (or sister). The Automatic
programmer can be plugged into an Arduino Uno
(or compatible). With the Arduino Integrated
Development Environment (IDE) we can then
write and transfer B4 code on our laptops or
PCs. The B4 comes with a handy Arduino library
that you can use to write your own B4 programs.
We’ll talk more about this a little later.

B4 Study Guide, Revision 1.4.3! 11

All computers internally work with binary
numbers only. However, we humans are
more familiar with decimal numbers. As you
work with the B4, you will get used to 1’s and
0’s and you will find it increasingly easy to
remember that a 0111 is a decimal 7. The
Decimal Display is a handy little module that
does that binary to decimal conversion for
you. You can plug it into any output port of
any other module, or insert it between any
other two modules.

We now have a basic understanding of the modules of our B4. Don’t worry if you haven’t
understood everything yet. We will revisit each module in more depth during the following
experiments.

12! B4 Study Guide, Revision 1.4.3

Wires and Connectors

In order to connect the B4 modules with the computer and with each other, the B4 comes
with 4 types of wires. They are:

A USB cable to provide electricity from a
power source to the B4’s Program Counter
module and from there, to all other modules
connected to the Program Counter. You can
connect the USB cable to a PC, Laptop, USB
Hub, USB battery, or any other suitable 5V
power source with a USB port.

2 pin power wires with black and red wires.
They are part of the B4’s power distribution
system and transport electricity from module to
module. Each module has one power input and
1-2 power outputs.

4 pin data wires. These transport 4 bit data
and program counter signals between the
modules.

1 pin control wires. They transport operation
codes and instruct some of the modules of the
B4 to do special things, such as storing data. The
1 pin wires come in many different colours.
However, they all work the same and their colour
has no influence on their function

You will find corresponding connectors on the modules. The 2 and 4 pin connectors are
directional and the wires will easily click into them. Unless you apply excessive force you
should not be able to accidentally plug them in the wrong way.

B4 Study Guide, Revision 1.4.3! 13

In the diagrams in this book, we use the following wiring notation. A solid line denotes a
power or data wire. A line with two arrows denotes a 1-pin control wire. This is just to make
the setup a little bit easier for you.

Symbol Meaning

power or data wire

control wire

A Word about Power
Each of the B4’s modules has a electric power distribution system on the left hand side of
the modules. With the exception of the Program Counter, which connects to a USB port,
the other modules have power in and out connectors.

+5V is on the left and GND (Ground, or 0V) is on the right. The wires will always connect
in the right way, but sometimes we will need to connect a single wire to either +5V or
GND during some of the experiments. When asked to connect to +5V, just plug a single
wire into the left pin of the power node. If asked to connect to GND, plug a single wire into
the right pin of a power node.

Please look after me
The B4 is fairly robust and will last a long time with proper care. As long as you don’t plug
wires into connectors they are not designed to go in and as long as you don’t drop the
modules, step on them or use them as a doorstopper, things should be just fine.
Always only plug the 2 pin wires into 2 pin connectors. the same applies to 4 pin wires and
connectors. Under no circumstances plug a 2 pin wire into a 4 pin connector.

Ok, that is enough preparation for now. We will collect more details as we work through the
experiments. Let’s get started.

+5V GND (0V)

14! B4 Study Guide, Revision 1.4.3

Exploration through Experimentation
In this book, we explore through experimentation. Yes, we conduct experiments during
which we will be plugging wires into the B4 modules, let them work together and
experiment with data and hardware. On occasion, when the bell rings at the end of the
lesson, we may not quite be finished with an investigation. So that we don’t have to take
all our good work apart (and start from scratch next lesson), the B4’s packaging also
serves as a storage tray. The foam insert contains several cut-outs to keep the B4's
modules safe during transport. But now that the B4 has arrived, we no longer need them.
Let’s turn the packaging into a lab:

Step 1
Remove all the B4 modules and wires from the packaging and place them on your desk.

Step 2
Remove the foam insert from the box, flip it over - as shown below - and re-insert it with
the flat side up. Reinsert it into the box.

Step 3
Place all modules neatly side-by-side on the foam insert and place all the wires in the cut-
out at the top. This will keep the wires that we don’t require for an experiment neatly in one
place.

In the future, we can simply leave our experiments on the foam insert, close the lid, and
place the box on a shelf - or anywhere else your teacher tells you.

B4 Study Guide, Revision 1.4.3! 15

Experiments
Overview
In this handbook, we have prepared several experiments that will help you to get to know
the modules of the B4, how they are being used and what functions they perform. Most
experiments consist of one or more experiments. You will learn how to combine modules
to that they perform functions together, which they could not perform individually.
Ultimately, you will develop a computer and learn about coding from the ground up. You
will also learn how a computer works internally and what critical role timing plays in the
proper function of a computer’s internal and external communication.

We recommend that you take the experiments in sequence. But if you are already a
computer genius, feel free to jump around. We should mention that the B4 can do much
more than what this handbook says. Feel free to explore and try out different things as you
like.

Experi
ment

Title Learning Objectives

1 One Small Step ... Function of the Program Counter module. Binary
number system. Binary to decimal conversion.
Clock signal.

2 Adding Two Numbers Function of the Adder module. Binary Addition.
Adding as a fundamental computational principle.
Extension of the addition principle towards
multiplication.

3 What about Subtraction? Function of the Inverter module. Binary
Complement. Extension of subtraction towards
division.

4 Short Term Memory Function of the Latch Module. Memory as a
fundamental component of a computer to
remember. Practical use of the Clock signal

5 Long Term Memory Function of the Data RAM module. Stacking of
memory. Data pointer. Practical application of the
Program Counter.

6 Giving Direction to Data Function of the 2-to-1 Data Selector module.
Controlling the flow of data through a computer.

7 Let’s Build a Manual
Computer, Parts I and II

Extension of Experiment 2 towards addition of 3
numbers. What makes a computer so special?
Infinite Loops.

8 Let’s Make a Real
Computer

Function of the Program RAM. Assembly of a
computer capable of addition, subtraction and
data storage.

16! B4 Study Guide, Revision 1.4.3

Experi
ment

Title Learning Objectives

9 Programming the B4 Manually programming of the Data and Program
RAM modules. Execution of a pre-designed
program.

10 B4 Learns Subtraction Extension of the program to include subtraction.

11 Automatic Programming Function of the Automatic Programmer module for
persistent storage of B4 programs on an Arduino
and for rapid programming of the B4. Extension of
the B4’s programming principles.

12 Higher-Level
Programming

Investigating a compact and conceptional
notation. Assembly language and the role of an
assembler. Shortening of the software design and
testing cycle.

13 On the Role of Timing Fundamental role of precise timing of the
communication of the B4 modules.

14 So, how does a
Computer work ...
actually?

How complex logic problems can be expressed by
Yes/No. Boolean logic. The role of gates and
transistors and how higher-level computer
functions, such as arithmetic units and memory,
can be constructed.

B4 Study Guide, Revision 1.4.3! 17

Experiment 1: One Small Step ...!

Modules Required: Program Counter

Take the Program Counter out of the box and connect it via a USB cable to your PC or
Laptop.

Setup of Experiment 1

The Program Counter only draws a little bit of electricity from your PC or Laptop. With it, it
will power itself and all the other B4 modules, as we will see later. The red display will
show a ‘b4’ for B4. On the Program Counter module, you will see a switch labelled Enter.
Go ahead and press it. What happens? The display in the middle switches to 0. Press the
button again and you will see a 1. Every time you press the Enter button, the number
increases by 1. On the right hand side of the Program Counter, you will see 4 LEDs. They
show exactly the same number as the display, but in binary. If your display shows a 2, then
the LEDs will show a 0010, like this:

0010 in binary is a decimal 2

If you press the button again, the display will show a 3 and the LEDs will show the
following pattern:

0011 in binary is a decimal 3

USB

18! B4 Study Guide, Revision 1.4.3

So, 3 is equal to 2+1. Which pattern will be displayed when you press the button again?
The display shows a 4 and the LEDs will look like this: 0100

0100 in binary is a decimal 4

If we keep pressing the button, we will see more light patterns in our LEDs and the
corresponding decimal numbers on the display. We can enter these into a table.

binary decimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

That’s a lot of binary numbers. We could try to remember them by heart, but let’s see if
there is an easier way. Can you perhaps see a pattern in the table above?

Each of the LEDs stands for a particular number:

B4 Study Guide, Revision 1.4.3! 19

1*8+1*4+0*2+1*1=13

The right LED stands for a 1. The LED on its left stands for a 2, the one next to it for a 4
and the left LED stands for an 8. So, the number we see in the picture above is 8+4+1=13.
So, instead of remembering 16 different binary numbers, we only need to remember the
decimal value that each LED represents and we can then easily calculate the number in
our heads. What, you think there is an even easier way? Yes, you are right. These
numbers double from right to left: 1, 2, 4, 8. So you only need to remember that the right
LED represents a 1 and that the numbers double as we go from right to left. This means
that we only have to remember two rules about binary numbers.

Question 1.1

?
What is the decimal value of 1111?

?
What is the decimal value of 0110?

? What is the decimal value of 1010?? What is the binary value of decimal 15?? What is the binary value of decimal 12??
What is the binary value of decimal 9?

?
How can you easily spot an odd binary
number?

To this point we have established that the Program Counter counts from 0 to 15, or, in
binary numbers, from 0000 to 1111. By now you have probably discovered that it will tick
over to 0000 after 1111. Why is this? Remember that our counter is binary and it is 4 bit
only. Adding 1 to 1111 results to a 5 bit number, which is 10000. And because our little
counter can’t store the 5th bit, it will simply think that 0000 is the new number. This is not a
bug, as we will see later.

What else does the Program Counter do? It produces the computer’s clock signal, which
computer scientists like to abbreviate as CLK. The clock signal is like the rhythm of music.
You can also think of it as a heartbeat. Every time you press the button, the Program

20! B4 Study Guide, Revision 1.4.3

Counter will produce a little pulse. The signal jumps from 0Volt to 5Volt, reside there for a
short period, and then drop back to 0V. We call 0V LOW and 5V HIGH. In the B4, the CLK
signal is HIGH as long as you hold the Enter button pressed down. When you release the
Enter button, the CLK signal will return to LOW

CLK signal

The program Counter also produces the inverse CLK signal, called !CLK. The !CLK signal
is the opposite of CLK. It is normally HIGH and drops down to LOW whilst the Enter button
is pressed.You might ask why we need both, CLK and !CLK? The answer is that some of
the computer circuits require an activation signal to do something. The Latch, for example,
requires a positive signal. Other circuits, such as our RAM modules are LOW active and
need a LOW signal to store data. Our !CLK looks like this.

Inverse CLK Signal: !CLK

So we’ll talk more about CLK and !CLK again when we cover the Latch and RAM modules
in the following experiments, and also at the end of the book in experiment 14, which is
about timing.
B4 Study Guide, Revision 1.4.3! 21

Experiment 2: Adding Two Numbers! ! ! ! ! ! !

Modules Required: Program Counter, Adder, 2x Variable, Decimal Display

Analyse

Adding numbers is the most fundamental thing a computer does. When you know how
to add, you can also multiply, because 3x5 is just a series of additions, namely 5+5+5.
So, by adding repeatedly, a computer can do multiplication. Addition is not only
fundamental to computers. At school, in mathematics, students learn addition well
before subtraction, multiplication and division.

Build

1) Connect the two Variables to the input of the Adder Module
2) Connect Power and Data cables as shown in the following diagram.

With the Variables, we will set numbers that we want the Adder to add up. In this
experiment, we also require the Program Counter, but only to provide electricity from
your Computer’s USB port to the Variables and to the Adder module.

The following diagram shows the setup of this experiment.

Experiment

1) Turn the knobs on both Variables until their LEDs are all off.
2) Turn the knob on one of the Variables so that just the right most LED turns on.

Observe

What is the output of the Adder?

Compare

The right LED on the Adder will light up.

22! B4 Study Guide, Revision 1.4.3

Understand

That’s because 0+1 is 1.

Turn the knob of the other Variable to show the 0001 LED pattern.

The Adder will then show 0010. That’s because 1+1=2, which is 0010 in binary. Binary
addition works just like the addition you already know with one difference, any number
higher than 1 leads to a carry over. In the decimal number system that you already
know, any number higher than 9 leads to a carry over. So, in a sense, binary addition is
simpler than decimal addition.

 0001 0101
+0001 +0110
-------- --------
 0010 1011

Setup of Experiment 2

USB

B4 Study Guide, Revision 1.4.3! 23

Question 2.1 Compute with your B4 and also on paper:

?
What is 0101 + 1010?

? What is 0010+0010?? What is 0111+0001?? What is 1111 + 0001? Why are all the
Adder’s LEDs off?

24! B4 Study Guide, Revision 1.4.3

Experiment 3: What about Subtraction?! ! ! ! ! !

Modules Required: Program Counter, Adder, 2x Variable, Inverter, Decimal Display

Analyse

The aim is to subtract two numbers. We call them A and B, and the result is R.

We can express this as a mathematical equation in the form: A - B = R

Subtraction is addition where the second number is a binary complement. A
complement is an opposite. The opposite of 0 is 1 and the opposite of 1 is 0. From there
follows that the opposite of 10 is 01 and the opposite of 1111 is 0000.

 Design

The Inverter module is a little machine that can produce complements of binary
numbers. It can turn any 4 bit number into its complement. For this, the Inverter needs to
be activated. We do this by connecting a wire from the Inverter’s Subtract In pin to the
+5V Pin. The LEDs on the Inverter Module will then show the opposite of the LEDs of
the connected Variable. So, if the Variable displays a 1100, then the Inverter will show
0011.

Build

1) Use the setup from experiment 2
2) Insert the Inverter module between the right Variable and the Adder
3) Connect a wire from the Subtract Out Pin of the Inverter to the Subtract In Pin of

the Adder module
4) Set the Variable to 0000 (all LEDs are off).

The following diagram shows the setup of this experiment.

Experiment

We now compute 4 minus 3.

4 is 0100 in binary and 3 is 0011 in binary.

1) Enter 0100 into the left Variable
2) Enter 0011 into the right Variable.

Connect a wire from the Inverter’s Subtract In pin to a +5V Pin as shown in the following
diagram

B4 Study Guide, Revision 1.4.3! 25

Setup Experiment 3

Observe

What is the output of the Inverter? What is the output of the Adder?

Compare

The Inverter Displays the complement of 0011, which is 1100. The Adder shows 0001.

26! B4 Study Guide, Revision 1.4.3

Evaluate

The binary complement of 0011 is 1100,
We can add 4 and the binary complement of 3 as follows:

 0100 (4)
+ 1100 (Binary Complement of 3)

 10000
+ 1
======
 10001

This is a 5 bit number, but the B4 can only store 4 bit numbers, so the B4 cuts off the
leading 1 and the final result of 4 minus 3 is 0001. Here is our entire calculation:

In general terms: A - B = A + Binary Complement of B +1

This works for any numbers A and B. Try it out !

Evaluate Deeper

What about Division?

Division is a series of subtractions. For example the result of 15 divided by 5 can be
computed by subtracting 5 from 15 until the result is less than 5, so

15-5=10
10-5=5
5-5=0.

3 steps were required until the result was less than 5, so we conclude that 15 divided by
5 is 3.

Question 3.1 Compute with your B4 and also on paper:

?
3minus 0

? 5 minus 2? 10 minus 0? 15 minus 15?
2 minus 3. What do you see?

B4 Study Guide, Revision 1.4.3! 27

Experiment 4: Short Term Memory! ! ! ! ! ! !

Modules Required: Program Counter, Latch, Variable

Analyse

In our brains we have short term memory that helps us to remember things that are
important for us right now. For example, we remember that we are holding something in
our hands, such as a pencil. Imagine how funny it would be if we forgot this and then
tried to scratch our nose because it was itchy. Short term memory is also useful when
we want to calculate 3+8+1. Because this calculation we usually carry out as 3+8=11
and then add 1 to reach the final result of 12. If we couldn’t remember the intermediate
result, we would never be able to add three numbers. You could even argue that we
would not be able to add two numbers because by the time we looked at the second
number we would have forgotten about the first one.

Design

Like us, computers have short term memory. In the B4, the Latch module performs this
function. The Latch ‘latches’ on the last computation and remembers its result. It has 4
bit of storage capacity and could be described as a house with 4 rooms. In each room, it
can store exactly 1 bit.

Build 4.1

1) Use the Program Counter, Variable and Latch and arrange the modules as shown
in the following diagram

2) Connect the modules with wires as shown.
3) Connect a 1-pin control wire to the Latch’s CLK In pin and from there to GND as

shown.

With the Variables, we will set numbers that we want the Latch to remember. In this
experiment, we also require the Program Counter, but only to provide electricity from
your Computer’s USB port to the Variables and to the Latch module.

The following diagram shows the setup of this experiment.

28! B4 Study Guide, Revision 1.4.3

USB

Setup of Experiment 4, Part 1

Experiment 4.1

Set a number, for example 0011, on the Variable

Observe 4.1

What does the Latch do?

Compare 4.1

Nothing. The LEDs on the Latch do not change.

Evaluate 4.1

The Latch is waiting for an activation signal. This is really important, as we need to tell
the Latch when it should remember something. In the B4, this signal is the CLOCK
signal that we have encountered in experiment 1.

B4 Study Guide, Revision 1.4.3! 29

Experiment 4.2

We now want to send a CLOCK signal to the Latch.
1) Using a 1-pin control wire, connect the CLK In pin of the Latch to a +5V pin.

Observe 4.2

What does the Latch do?

Compare 4.2

We observe that the Latch now also shows 0011, which is the value at the output of the
Variable.

Evaluate 4.2

The Latch has received an activation signal. This causes it to remember the data at its
input port.

Experiment 4.3

We now want to explore what happens when the data changes, whilst the Latch still
receives the activation signal. Leave the control wire connected and change the number
on the Variable to, let’s say, 0100.

Observe 4.3

What does the Latch do? Will the LEDs on the Latch change too?

Compare 4.3

No. The LEDs on the Latch do not change.

Evaluate 4.3

The Latch will only look at the data on its input side when CLK changes from LOW to
HIGH, or from 0 Volt to 5 Volt.

30! B4 Study Guide, Revision 1.4.3

Experiment 4.4

What happens to the Latch when the CLK signal changes?
1) Disconnect the CLK wire from+5 and then re-connect it to +5V again

Observe 4.4

What does the Latch do? Will the LEDs on the Latch change?

Compare 4.4

Yes, the value of the Latch is now 0011

Evaluate 4.4

By disconnecting and re-connecting the wire we have made our own CLK signal. This is
nice, but a bit impractical for a real computer as we don’t want to always plug wires in or
out. Do you remember from experiment 1, that one of the functions of the Program
Counter is the production of the CLK Signal?

Design 4.5

We want the Latch to work without us having to change wires around. We do this by
connecting the Latch to the CLK signal that the Program Counter generates.

Build 4.5

We re-wire our experiment a little, as shown in the next diagram:

Move the control wire from +5V to the CLK+5 Pin on the Program Counter module as
shown in the following diagram

B4 Study Guide, Revision 1.4.3! 31

USB

Setup of Experiment 4, Part 2

Experiment 4.5

1) Change the value on the Variable to, let’s say 1000
2) Press the Enter button on the Program Counter module

Observe 4.5

What does the Latch do? Will the LEDs on the Latch change?

Compare 4.5

Yes, The value of the Latch changes to 1000.

Evaluate 4.5

Pressing the enter button on the Program Counter produces the CLK signal, which is
sent to the Latch. The Latch will then store 1000.

We have just found a controlled way to activate the Latch. This will become very useful, as
you will see in experiment 7B.
32! B4 Study Guide, Revision 1.4.3

Experiment 5: Long Term Memory! ! ! ! ! ! !

Modules Required: Program Counter, Data RAM, Variable

Analyse

In experiment 4, we looked at the B4’s short term memory, which we liked to a house
with 4 rooms. The Data RAM is, in this analogy, a 16-floor high-rise with 4 rooms on
each floor.

To store data into the Data RAM Module, we first want to tell it on which floor we want
our data to be stored. Then, we give it 4 bits of data and finally tell it to actually store it.

Floor 15

Floor 14

Floor 13

Floor 12

Floor 11

Floor 10

Floor 9

Floor 8

Floor 7

Floor 6

Floor 5

Floor 4

Floor 3

Floor 2

Floor 1

Floor 0 Program Direction
Data RAM: 16x 4 bit.

B4 Study Guide, Revision 1.4.3! 33

Build 5.1

1) Connect the Program Counter Out Pin to the PC In pins of the Data RAM module.
2) Connect the Output of the Variable to the Data In port of the Data RAM
3) Connect the Write RAM Pin of the Variable to the Write Data RAM In pin of the Data

RAM with a 1-pin control wire.

USB

Setup of Experiment 5

Experiment 5.1

1) Press the Reset button on the Program Counter module until it is at step 0000.
2) Set the data on the Variable to 1010.
3) Press the button on the Variable to store the data. The Data RAM’s LEDs will now

display 1010. Congratulations, you have just stored 4 bit of data in the Data RAM!!
4) Press the Enter button on the Program Counter until it is at step 0001.
5) Change the data on the Variable to 0101.
6) Press the button on the Variable to store the data. You have just stored your second 4

bit of data in the Data RAM

Change the data on the Variable.

34! B4 Study Guide, Revision 1.4.3

Observe 5.1

What happens to the LEDs on the Data RAM module? Do they change as well?

Compare 5.1

You will notice that the LEDs on the Data RAM will remain unchanged unless you press
the button on the Variable.

Evaluate 5.1

You will remember from experiment 1 that the Program Counter can generate numbers
from 0 to 15. As it happens, this is exactly the number of floors in our Data RAM high-
rise. The Program Counter will therefore tell the Data RAM module which of its
floors we want to access. You can imagine it as an elevator that moves upwards, one
floor at a time, starting on floor 0 and finishing on floor 15. It will then drop, like a stone,
back to floor 0.

The Variable can do two things:
a) On it, we will generate the data we want to store in the Data RAM module, and
b) Send a ‘Store’ command to the Data RAM module when we press the button on the

Variable The data RAM then stores the data from the Variable, to the floor that the
program counter indicates.

During programming and operation of
the B4, ensure that the Program

Counter remains powered and that
the Data RAM and the Program RAM
modules remain connected to power,

too. This ensures that the RAM
modules don’t forget their data.

B4 Study Guide, Revision 1.4.3! 35

Experiment 5.2

Fast-forward again to 0000 on the Program Counter by pressing its the Reset button.

Observe 5.2

Which value do you see on the Data RAM?

Compare 5.2

 Once you arrive at step 0000, the Data RAM will show 1010 again.

Random Data

You have probably noticed that there is all sorts of data in the Data RAM that you have not
stored there. Where does it come from? The Data RAM consists of hundreds of tiny little
switches. When the Data RAM is plugged into power, then some of them are randomly
open and some of them are randomly closed. That’s not a problem.

Experiment 5.3

You can manually clear the RAM by doing the following: First, set the Variable to 0000.
Then, set the Program Counter to 0000 as well.

1) Repeat
2) Press the Button on Variable to store 0000 into Data RAM
3) Press the Enter Button on Program Counter
4) Until Program Counter displays 0000 (that’s 1111+1)

Evaluate 5.3

Did you notice? You have just completed your first algorithm on the B4. Specifically, it
is a Repeat Loop.

36! B4 Study Guide, Revision 1.4.3

Experiment 6: Giving Direction to Data! ! ! ! ! !

Modules Required: Program Counter, 2-to-1 Selector, 2x Variable

Analyse

Imagine, if you will, a motorway that goes straight through the countryside. However,
someone forgot to build the on-ramps. If you wanted to drive on this motorway, you
could only get on it at the beginning. This would be quite a silly motorway. In a computer
we also need on-ramps, or, as we call them, selectors, to influence the path that data
travels through the computer.

The B4 has one 2-to-1 Selector. It is comparable to an on-ramp on a motorway. As we
will later see, the B4 uses its 2-to-1 Selector to choose whether it wants data from the
Data RAM or from the Adder to reach the Latch (we learned about the Latch in
experiment 4).

Build 6.1

Connect the two Variables to the 2-to-1 Selector selector as shown. The control wire
goes from the Select pin to +5V

USB

Setup of Experiment 6
B4 Study Guide, Revision 1.4.3! 37

Experiment 6.1

Set the left Variable to 1010 and the right Variable to 0101.

Observe 6.1

What do you see on the LEDs of the 2-to-1 Selector?

Compare 6.1

The 2-to-1 Selector will show 0101, which is the data from the left Variable

Evaluate 6.1

By default it will show the data from the left Variable.

Experiment 6.2

Connect a control wire from the Select pin to GND.

Observe 6.2

What do you see on the LEDs of the 2-to-1 Selector?

Compare 6.2

The 2-to-1 Selector will show 0101, which is the data from the right Variable

Evaluate 6.2

The control wire influences from which input port the 2-to-1 Selector chooses the data
that it feeds to its output port. We have just learned how we can influence the direction
of data.

Disconnect the wire again and the 2-to-1 Selector will again show 1010.

38! B4 Study Guide, Revision 1.4.3

Experiment 7a: Let’s Build a Manual Computer, Part 1 ! ! ! !

Modules Required: Program Counter, 2-to-1 Selector, Adder, 2x Variable

During the first six experiments we have explored the parts that make a computer. In this
experiment, we will explore what makes a computer so special, namely its ability to add a
series of numbers. In experiment 2 we learned how we can add two numbers. We did this
simply by sending them to the input ports of our Adder modules. We know that our Adder
limits us to the processing of two numbers at any given time.

But how can a computer add three numbers?

Analyse

The aim is to add three numbers. We call them A, B, and C and the result is R.

We can express this as a mathematical equation in the form: A + B + C = R

A + B + C is the same as first calculating A+B and then adding C to the result of A + B.
A + B = D which we call the intermediate result. We therefore decompose the addition
of three numbers into two additions of two numbers each:

Step 1: A + B = D
Step 2: D + C = R

For this to work, we require a mechanism to remember the intermediate result D. We will
explore this in experiment 7b. Let’s now investigate where the data comes from and where
it needs to go to:

Data Origin Destination

A (our first number) Variable 1 Adder

B (our second
number)

Variable 2 Adder

C (our third number) Variable 1 Adder

D (the sum of A+B) Adder Adder

Analyse & Design

A, B and C come from one of two Variables, but D comes from the Adder. Because it
would be a bit impractical to set one of the Variables to D, we need to find an automatic
way for one of the Adder input ports to receive data from either the Variable or the
Adder’s output port. Does this remind you of something? Yes, the 2-to-1 Selector can do
this because it can select one of two data sources and feed the data to its output port.

B4 Study Guide, Revision 1.4.3! 39

Build

1) Insert the 2-to-1 Selector into the wiring from experiment 2 as illustrated in the
following diagram.

2) Then, connect its output to the input of the Adder
3) Then, connect the output of the Adder to the right input of the 2-to-1 Selector
4) Connect the right Variable to the remaining input port of the 2-to-1 Selector
5) Connect the Select Control Wire from the 2-to-1 Selector into +5V as shown

Let’s try to add 1+1+4.

Experiment

Set both Variables to 0001

Observe

What value is at the output of the Adder?

Compare

The Adder displays 0010 (decimal 2)

40! B4 Study Guide, Revision 1.4.3

USB

+5V
left pin

Setup of Experiment 7a

Evaluate

To understand this, we explore the flow of data. Data flow is the movement of the data
through and between our modules. We have drawn this in the next diagram. To make it
easier to observe, the power and data wires have been omitted from the diagram.

The number B from the right Variable goes into the 2-to-1 Selector and from there into
the Adder. There, it meets the data from the left Variable, A, and the adder computes
A+B=D, which is B0010, which the Adder sends to the 2-to-1 Selector, But because the
Selector listens to data from the right Variable, it simply ignores D. The data flow stops
there. So the Adder now shows the sum of our addition, which is B0010. We have
successfully added two numbers.

B4 Study Guide, Revision 1.4.3! 41

A

+5V
left pin

B

A+B=D

B

D

USB

Data-flow with active 2-to-1 Selector

But our goal is to add three numbers. We continue with our experiment.

Experiment

Set the left Variable to C, which is B0100 (decimal 4).

Observe

What value is at the output of the Adder?

Compare

Immediately, the output of the Adder changes to 4+1=5.

That’s not good. But let’s ignore this for a moment. We will solve this later, in the next
experiment.

42! B4 Study Guide, Revision 1.4.3

Experiment

Deactivate the 2-to-1 Selector to feed D back into the Adder. We do this by changing the
control wire from +5V to GND on the Program Counter. The 2-to-1 Selector’s right blue
LED goes out.

Observe

What value is at the output of the Adder?

Compare

The LEDs of the Adder suddenly switch on. But some of them are brighter than the
others. The Adder is not showing the expected result 6 (0110), which would have been
the result of the addition of 2 (from the previous step) and 4 from the left Variable.

Evaluate

To explain this unexpected behaviour, we need to take a look at the data flow, which you
can see in the following diagram. In the beginning, D reaches the output of the 2-to-1
Selector (because the Selector is listening to the Adder). C and D are at the input of the
Adder, which computes C+D=R.

So far so good, but what happens then? The result R gets from the output of the Adder
to the input of the 2-to-1 Selector, which again feeds it through to the input of the Adder.
The Adder performs C+R=R’, which it again provides to the input of the 2-to-1 Selector.
This results in R’’, then R’’’ and so forth. So R never stands still, it keeps moving. In fact,
we have just made a loop. This is the famous infinite loop that you might have heard of.
Infinite means that it does not have an end.

The infinite loop is so famous that there is even a road named after it in Cupertino,
California, USA, where the Apple offices are.

B4 Study Guide, Revision 1.4.3! 43

USB

GND
right pin

C

C+D=R

D

R

Data-flow with inactive 2-to-1 Selector

44! B4 Study Guide, Revision 1.4.3

Evaluate deeper

We can visualise this in a flowchart:

Infinite Loop as Flowchart

We begin with :
A=1
B=1
C=4

A+B=D=2

Round 1: C+D=R=4+2=6
Round 2: C+R=R’=4+6=10
Round 3: C+R’=R’’=4+10=14
Round 4: C+R’’=R’’’=4+14=18, but that’s a 2 in a 4-bit system
Round 5: C+R’’’=R’’’’=4+2=6

So this produces the series 2, 6, 10, 14. We can write this in binary:

B4 Study Guide, Revision 1.4.3! 45

Decimal Value Binary Value

2 0010

6 0110

10 1010

14 1110

Let’s look at the individual bits more closely

Decima
l Value

Binary
Value

bit3 bit2 bit1 bit0

2 0010 0 0 1 0

6 0110 0 1 1 0

10 1010 1 0 1 0

14 1110 1 1 1 0

Sum 2 2 4 0

So, bit1 is always active, but bit2 and bit3 are lit only every second time and bit0 is not
used at all. So we would expect that the LEDs 3, 2, and 1 on the Adder are lit, but LED
0 stays off. And this is what we see.

In fact, R moves so fast that we cannot see it changing with our naked eye. In our lab,
we have measured the change of R with an oscilloscope1 and found that it changes 16
million times per second. That’s how fast our chips are.

You can also think of this as a figure of eight, representing an endless loop of data flow.
We have drawn it in the following diagram.

46! B4 Study Guide, Revision 1.4.3

USB

GND
right pin

C

C+D=R

D

R 8
We have built an Infinite Loop !

We seem to be on the right track by using the 2-to-1 Selector, but we have two big
problems:

1) The Adder changes its output as soon as we enter the third number C.
2) Once we activate the 2-to-1 Selector, the output of the Adder keeps changing 16 million

times per seconds.

We need something that stops the infinite loop in a controlled way. This module needs to
remember the result of A+B. This is our challenge for the following experiment.

B4 Study Guide, Revision 1.4.3! 47

Experiment 7b: Let’s Build a Manual Computer, Part 2! ! ! !

Modules Required: Program Counter, 2-to-1 Selector, Adder, 2x Variable, Latch

In the previous experiment, we tried to build a manual computer, but encountered a
problem with an infinite loop. In this experiment, we will solve this problem and develop a
simple manual computer that already has a number of the characteristics of a ‘real’
computer.

In experiment 4, we learned about the Latch. It can remember 4 bits, but only when it
receives an activation signal. This sounds like a promising solution to our infinite loop
problem.

With the Latch, we can change our data flow to the following:

The Latch breaks the Infinite Loop

As shown in the following diagram, insert a Latch between the output of the 2-to-1 Selector
and the input of the Adder (We could just as well place it between the output of the Adder
and the input of the 2-to-1 Selector). To control the Latch, we connect the Latch CLK Input
48! B4 Study Guide, Revision 1.4.3

to any of the the Program Counter’s CLK outputs. They are the bottom row of pins as
shown. Make sure you don’t accidentally connect to the pins in the row above (!CLK).

USB

+5V
left pin

Setup of Experiment 7b

The following two diagrams illustrate the data flow during steps 1-5 and steps 6-8. Note
how the 2-to-1 Selector changes the data flow and how the Latch always interrupts the
infinite loop. Only when the CLK signal is sent from the Program Counter will the Latch
briefly allow the data to flow from its input to its output.

B4 Study Guide, Revision 1.4.3! 49

Again, we try to compute 1+1+4.

1) Set both Variables to 0001.
2) Re-set the Latch to 0000 by briefly by connecting a control wire from Latch-reset to

GND. Then, remove the control wire. All LEDs on the Latch should be off.
3) Observe the output from the Adder. It should show 0001.

What? 0001? Why not B0010, which is 1+1? Relax, we haven’t yet instructed the Latch to
remember.

4) Click the Enter button on the Program Counter. This sends a CLK signal to the Latch.
5) The Latch then remembers 0001 from the 2-to-1 Selector and feeds this to the Adder,

which shows B0010. Hooray, we have computed 1+1=2.

USB

+5V
left pin

Data-flow during steps 1-5

50! B4 Study Guide, Revision 1.4.3

Next we need the Latch to remember this result of the addition.

6) Move the 2-1-Selector’s control wire from +5V to GND. The 2-1-Selector is now
interested in any data from the Adder. That’s B0010, which the 2-1-Selector provides to
the input of the Latch.

7) Click the Enter button on the Program Counter again. This generates a CLK signal for
the Latch. The Latch then remembers 0010. This is the result of A+B=D.

Finally, we add the third number, C, which is 4, to D.

8) Set the left Variable to B0100 (4 in decimal)
9) The Adder displays the final result, which is B0110 (6 in decimal)

USB

GND
right pin

Data flow during steps 6-8
B4 Study Guide, Revision 1.4.3! 51

Mission accomplished!
It is interesting to note that after step 7, the Adder displays a 3, which is 1 (from the left
Variable) plus 2, which is D. But that doesn’t concern us because we will set the left
Variable to a new value in step 8.

As we will see later, the Latch remembers the output of the Adder at every clock cycle. The
programs that we will write can load data from RAM, write Data back and control the flow
of data with the 2-to-1 Selector. Adding and latching will be done automatically. You can
compare this to your body. Your cells also work automatically - your brain does not need to
instruct them. That’s a bit of a generalisation, but you get the picture.

Controlling the flow of data is at the heart of every computer. In the this experiment, we
have learned that we can add more than two numbers by using the 2-to-1 Selector and the
Latch. The 2-to-1 Selector helps us to switch the output of the Adder into the next addition
cycle, whilst the Latch remembers the intermediate result and prevents an infinite loop.
This works not only for three numbers, but also for five, six, or any number of numbers we
want to add.

For example the addition of 4 numbers can be broken down into three additions of two
numbers:

A+B+C+D

Step 1: A+B=E
Step 2: E+C=F
Step 3: F+D=R

Any addition of n numbers can be broken into n-1 additions of two numbers.

We are making good progress towards a real computer. In the next experiment, we will
learn how to store data and program information so that we no longer have to set data with
Variables and no longer have to change the wiring of the control signals during calculation.
The solution to both problem is, surprisingly, more memory.

52! B4 Study Guide, Revision 1.4.3

Experiment 8: Let’s Make a Real Computer !! ! ! ! !

Modules Required: All modules except for the Automatic Programmer

During the first seven experiments we have explored the parts that make a computer. We
have learned about the Program Counter, the Adder, the Inverter, the Latch the Data RAM
and the 2-to-1 Selector. As we experimented with them, we learned about binary numbers,
the CLK signal, how to store data in the Data RAM, how to avoid an infinite loop, and how
to give data direction through the 2-to-1 Selector.

B4 Design

Did you notice that the only difference between adding and subtracting two numbers is the
activation of the Inverter module? Connecting just one wire to +5V activated it, and as a
result, the adder didn’t add, but subtract. Similarly, storing data in the Latch required the
CLK signal. Storing data in the Data RAM needed the press of a button from the Variable,
which produced also a signal. In the B4, a binary 1 corresponds to about +5V and a binary
0 to about 0V. If we could store some of these 1’s and 0’s and connect them to the
Inverter, Latch and Data RAM, then we could control our computer. And this is where the
Program RAM comes into play. Like the Data RAM, the Program RAM can store 16 sets of
4 bit of information.

If we put the Data RAM and the Program RAM side by side and label their respective bits,
we get a diagram like the one below.

bit #

Data RAMData RAMData RAMData RAM Program RAMProgram RAMProgram RAMProgram RAM

3 2 1 0 A B C D

Step 15

Step 14

Step 13

Step 12

Step 11

Step 10

Step 9

Step 8

Step 7

Step 6

Step 5

Step 4

Step 3

B4 Study Guide, Revision 1.4.3! 53

bit #

Data RAMData RAMData RAMData RAM Program RAMProgram RAMProgram RAMProgram RAM

3 2 1 0 A B C D

Step 2

Step 1

Step 0

0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 1 0

In the Data RAM we store the data that we want the B4 to work with and in the Program
RAM we store the commands required to switch parts of the B4 on and off to compute.
Does this look like a code? Yes, absolutely. Now you know where the term ‘coding’ comes
from.

We need to decide what each bit in the Program RAM is supposed to do.

Let’s decide that:
- Bit 3 activates the Inverter when 1. The Adder then subtracts, instead of adding. Let’s

therefore call it SUB (for subtract)
- Bit 2 activates the writing into the Data RAM when 1. Let’s call it WRT (for write)
- Bit 1 points the 2-to-1 Selector to the Data RAM when 1, or to the Adder when 0. We call

it SEL (for select)
- Bit 0 is reserved for you, the students, to make extensions to the B4. It is not important at

the moment.

We call these codes, instruction codes or operation codes, or, in short, opcodes. They
instruct circuitry to perform certain operations. The following table summarises the B4
opcodes:

Output Program
RAM Module

OpcodesOpcodesOpcodesOpcodes

A B C D

Name

Abbreviation

Function when 1

Function when 0

Subtract Write to Data
RAM

Select user defined

SUB WRT SEL USR

Subtracting Write content of
Latch to Data
RAM

Connect input
of Latch to
output of Data
RAM

no function

Adding Don’t write
content of
Latch to Data
RAM

Connect input
of Latch to
output of Adder

no function

You might wonder why there is no opcode to activate the Latch. The Latch operates on the
CLK signal, which is automatically generated when the Program Counter ticks.

54! B4 Study Guide, Revision 1.4.3

Do we need an opcode to activate the Adder? No. The Adder will always add whatever
data is provided to it. All we need to do is to decide whether we want to use the Adder’s
output or not. The SEL signal performs this job.
With the opcodes settled, we can re-draw our table as follows. We also give it a little
description field for each program step to write down in our own language what the B4 is
expected to do.

Step #

Data RAMData RAMData RAMData RAM Program RAMProgram RAMProgram RAMProgram RAM Description

3 2 1 0 SUB WRT SEL USR

Step 15

Step 14

Step 13

Step 12

Step 11

Step 10

Step 9

Step 8

Step 7

Step 6

Step 5

Step 4

Step 3

Step 2

Step 1

Step 0

0 1 0 0 Store the result
(0011) back into
the Data RAM

0 0 1 0 0 0 0 0 Send 0010 to the
Adder, which
adds it to the
0001 stored in
the Latch.

0 0 0 1 0 0 1 0 Load 0001 from
the Data RAM
into the Latch.
This is the first
number for the
adder

In step 0 the B4 loads 0001 from the Data RAM and latches on to it. In Step 1, it loads the
second data (0010), adds it and holds on to it on the output of the Adder. In Step 2, the B4

B4 Study Guide, Revision 1.4.3! 55

does two things. It first latches the result from the Adder and then writes it into the Data
RAM.

Let’s now put theory into practice by connecting all core components together to build this
machine. We will then program it and finally run the program.

B4 Assembly

This will be our biggest build so far for which we require all 7 core components of the B4:

1x 2-Line-to-1-Line Selector
1x Adder
1x Data RAM
1x Inverter
1x Latch
1x Program Counter
1x Program RAM

We place them on the desk in front of us as shown on the next pages and then connect
the wires as shown. You can tick the wires off one by one with a soft pencil on the paper of
this handbook to ensure that you haven’t forgotten one.

56! B4 Study Guide, Revision 1.4.3

If you like, you can set this experiment up by placing the modules in the foam insert that
came with the B4 box. We designed it specifically with experiments 8-12 in mind. This way
the modules neatly stay in place.

We begin by connecting all the power wires, as shown in the following diagram:

USB

Data RAM

Inverter

Adder Latch

2-to-1 Selector

Program RAM

Program Counter

Decimal Display

Setup of Experiment 8: Power Wiring only

B4 Study Guide, Revision 1.4.3! 57

Then, we add the data wires:

Setup of Experiment 8: Data Wiring only

58! B4 Study Guide, Revision 1.4.3

And finally, we add the 1-pin control wires.

Take a closer look at the control wires on the Program Counter and on the Program RAM
modules. To connect them to the correct pins is really important and we have therefore
magnified the sections of the Program Counter and Program RAM in the figure below.
The Latch’s CLK In pin is connected to CLK+3 and the Program RAM’s !CLK In pin
gets wired to !CLK+4.

Setup of Experiment 8:1-Pin Control Wiring only

B4 Study Guide, Revision 1.4.3! 59

The Program Counter has one row of pins dedicated to the CLK signals and another row
of pins for the !CLK signals. They are labeled as CLK+1+2+3+4+5 and !CLK+1+2+3+4+5
respectively. Because some the modules in the B4 need input from other modules, before
they can perform their function, we need to activate (or trigger) them in the proper
sequence. For example, before we can store data in the Latch, it has to be made available
by the Data RAM first. And before we can write the result of an arithmetic operation back
into the Data RAM, it also has to be stored in the Latch first.

And this is where the B4’s CLK and !CLK signals are required. When you press the Enter
button on the Program Counter, the CLK signal will be generated, just as shown in
experiment 1.

CLK and !CLK Delay Chain

To delay and invert a signal, we require a circuit. An electronic circuit that can perform this
function is called an inverter. It inverts a 1 signal into a 0 signal and a 0 signal into 1.

Although inverters are very fast and operate nearly at light speed, they still need a little bit
of time to do this - about 5 billionth of a second, which is 5 nano seconds, 5ns. This means
that the !CLK signal changes 5ns after the CLK signal. The !CLK+5 signal occurs
11x5ns=55ns after the original CLK signal. With the CLK+1+2+3+4+5 and !
CLK+1+2+3+4+5 we can finely tune the B4 so that it operates just in the right order. This
involves a little bit of trial and error. We have found that the B4 operates well with the
Latch connected to CLK+3 and the Program RAM wired to !CLK+4. We encourage
you to experiment with these settings a little bit later, once we have programmed the B4.

Fun fact: The speed of light is
approximately 300,000km per

second. In 5ns, light travels about
1.5m.

60! B4 Study Guide, Revision 1.4.3

Your B4’s hardware is now complete and should look like in the figure below. Next, we will
develop the software.

USB

Completed Setup of Experiment 8

B4 Study Guide, Revision 1.4.3! 61

Experiment 9: Programming the B4! ! ! ! ! ! !
We will program the B4 in two steps: First, we will enter the program code into the
Program RAM. Then we will enter the data into the Data RAM. For both, we require the
Variable.

Programming the Program RAM
Connect the Variable Module to the Program RAM as shown in the following figure. The
Variable draws power from any available 2 pin power connector. Its output is connected to
the Data In Pins on the Program RAM and the Write RAM Pin of the Variable connects to
the Write Program RAM In Pin on the Program RAM.

Setup of Experiment 9: Programming the Program RAM.

USB

62! B4 Study Guide, Revision 1.4.3

Set the Program Counter to 0000. That’s step 0 of our program.

Step 0:
We now enter our first command. Set the Variable to 0010 and then press the button on
the Variable. Congratulations, you have just programmed the B4 to Load data from the
Data RAM into the Latch.

Step 1:
For our next command, we need to progress the program counter to 0001, which is step 1.
Then, on the Variable, enter 0000 and press the button on the Variable. Congratulations,
you have just programmed the B4 to send a second set of data to the Adder. The adder
will add to the data already stored in the Latch.

Step 2:
Progress the Program Counter to 0010 and enter 0101 into the Variable. Click its button to
store this command into the Program RAM. The instruction is to store the result of the
addition back into the Data RAM.

Steps 3 to 15:
We enter neutral commands into the Program RAM. In the B4, the neural command code
is 0000. Technically it loads data from the RAM and adds it to whatever is in the Latch, but
since we will set the corresponding Data RAM to 0000 shortly, the effect of the activity is
neutral. So let’s set the Program Counter to 0011, set the Variable to 0000 and press the
button on the Variable. Repeat this for Steps 4 to 15. In the end, your Program RAM
should look like in the table below. You can check this by pressing the Enter button on the
Program Counter repeatedly. If everything is ok, move on the the next section.

bit #

Data RAMData RAMData RAMData RAM Program RAMProgram RAMProgram RAMProgram RAM Description

3 2 1 0 SUB WRT SEL USR

Steps 3-15

Step 2

Step 1

Step 0

0 0 0 0 0 0 0 0 do nothing

0 0 0 0 0 1 0 0 Store the result
back into the
Data RAM

0 0 1 0 0 0 0 0 Add 0010 to the
contents of the
Latch.

0 0 0 1 0 0 1 0 Load 0001 from
the Data RAM
into the Latch.
This is the first
number for the
Adder

Program for Experiment 9

Programming the Data RAM
To program the Data RAM we follow a similar approach to programming the Program
RAM. Remove the Variable from the Program RAM and connect it to the Data RAM as
B4 Study Guide, Revision 1.4.3! 63

shown in the following image. To connect the Variable, you will need to temporarily
disconnect the 4 pin wire from the Dot Matrix Display to the Data RAM, and also the
Write Data In wire from the Program RAM. We will reconnect them again once we have
programmed the Data RAM.

Parked
Wires

Setup of Experiment 9: Setting the Data RAM

We now set the data.

Set the Program Counter to 0000. That’s step 0 of our program.

Step 0:
64! B4 Study Guide, Revision 1.4.3

We enter our first data. Set the Variable to 0001 and then press the button on the Variable.

Step 1:
For our next data, we progress the Program Counter to 0001, which is step 1.
Then, on the Variable, enter 0010 and then press the button on the Variable.

Step 2:
Progress the Program Counter to 0010 and enter 0000 into the Variable. Click its button to
store this data into the Data RAM. We store 0000 here, as our program will store the result
of the addition into the memory

Steps 3 to 15:
We clear the remaining Data RAM. Set the Program Counter to 0011, set the Variable to
0000 and press the button on the Variable. Repeat this for Steps 4 to 15. In the end, your
Data RAM should look like in the table above. You can check this by pressing the Enter
button on the Program Counter repeatedly. If everything is ok, move on.

Ok, that’s it. In a final step, set the Program Counter to 1111 and then don’t forget to
remove the Variable, and reconnect the wire from the Data RAM to the Latch, and
also the Write Data In wire from the Program RAM. B4 is now ready to compute.

Executing the Program
In the previous two steps, we have entered code and data into the B4’s RAM modules.
Now it is time to run the program and observe the B4’s operation.

The B4’s Program Counter should display 1111. Now press the Enter button. The Program
Counter will move to 0000 and execute the first step of its program. Check the LEDs of
the Data RAM. They will show 0001. Press Enter on the Program Counter and observe
how the data moves through the computer. At the end of this step, the Data RAM will
display 0010, with 0001 having been latched and the result of the addition (0011) waiting
at the Adder to be latched and stored in the Data RAM in the next program step.

B4 Study Guide, Revision 1.4.3! 65

Experiment 10: B4 Learns Subtraction! ! ! ! ! !
In this experiment, we use the same setup from the previous experiment. We now want to
program the B4 to calculate the result of 1+2-1 and store the result back into memory.

Designing the Program
In experiment 9, we already calculated 1+2, so we will just need to extend this program
with an additional subtraction step. We leave steps 0 and 1 unchanged. Step 2 (writing
data into the Data RAM) becomes Step 3 and we need to enter a new Step 2. The
complete new program is listed in the table below. Follow the instructions on how to
program the Program RAM and Data RAM modules from the previous experiment,
including connecting and disconnecting wires to enter the new program and data into the
RAM modules for this experiment.

bit #

Data RAMData RAMData RAMData RAM Program RAMProgram RAMProgram RAMProgram RAM Description

3 2 1 0 SUB WRT SEL USR

Steps 4-15

Step 3

Step 2

Step 1

Step 0

0 0 0 0 0 0 0 0 do nothing

0 0 0 0 0 1 0 0 Store the result
back into the
Data RAM

0 0 0 1 1 0 0 0 Subtract 0001
from the contents
of the Latch by
activating the
Inverter.

0 0 1 0 0 0 0 0 Add 0010 to the
contents of the
Latch.

0 0 0 1 0 0 1 0 Load 0001 from
the Data RAM
into the Latch.
This is the first
number for the
Adder

Program for Experiment 10

66! B4 Study Guide, Revision 1.4.3

Running the Program
The B4’s Program Counter should display 1111. Now press the Enter button. The Program
Counter will move to 0000 and execute the first step of its program. Check the LEDs of the
Data RAM. They will show 0001. Press Enter on the Program Counter to perform step #1.
At the end of this step, the Data RAM will display 0010, with 0001 having been latched and
the result of the addition (0011) waiting at the Adder to be latched in the next program
step. Press enter again for program step 2 to load 0001 from the Data RAM. The output
from the Program RAM is 1000, which activates the Inverter. It inverts 0001 to 1110 and
feeds it to the Adder. The Adder will add 0011 from the Latch with 1110 and add I. The
result is 0010. Press Enter again. 0010 will get latched and then stored into the Data RAM
because the Program RAM’s output is 0100, which sends a write instruction to the Data
RAM.

B4 Study Guide, Revision 1.4.3! 67

Experiment 11: Automatic Programming! ! ! ! ! !

You will probably agree that entering data and program code into the B4 isn’t very
convenient. In the previous experiments, we have used the Variable modules to get an
understanding of coding on the lowest possible level. To make the programming process
more elegant, we will introduce the Automatic Programming (AP) shield. The AP can take
full control of the B4 during the programming phase, as to avoid that, for example, data
from the Latch gets written to the Data RAM accidentally. However, the AP will sit quietly in
the background and not interfere with the B4 while the B4 runs a program. In a sense, the
AP is a hacking device. All this has to be achieved without moving a single wire between
programming mode and runtime mode.

To get it to work, you need four things:

1) An Arduino Uno or compatible and a USB cable that fits into the Arduino. The B4’s USB
cable may or may not fit, depending on the Arduino you use.

2) The B4 from experiments 8, 9, 10. You can extend the setup or start from scratch. We
will show you step-by step instructions.

3) A Laptop or PC with the Arduino IDE
4) The B4 Arduino Library, available from http://www.digital-technologies.institute/

downloads

Step 1 Installing the Automatic Programmer

Plug the Automatic Programmer shield into the Arduino as shown in the following picture:

Installing the Automatic Programmer Shield on an Arduino

68! B4 Study Guide, Revision 1.4.3

http://www.digital-technologies.institute/downloads
http://www.digital-technologies.institute/downloads
http://www.digital-technologies.institute/downloads
http://www.digital-technologies.institute/downloads

Step 2: Modules and their Wiring

Insert the Automatic Programmer into the setup of our circuit from experiment 8. A good
place for the Automatic Programmer is on the right side of the Program RAM. Because of
the complexity of the Setup of this experiment, we do it in multiple stages:

Stage 1: Modules and Power Wires:

First, let’s arrange the modules as shown below. Then, connect the power wires as shown.
Most of them would already be in place from the previous experiment, but you will need to
run a wire to the Automatic Programmer.

Setup of Experiment 11:Power Wiring only

U
SB

Data RAM

Inverter

Adder Latch

2-to-1 Selector

Program RAM

Program Counter

Decimal Display

Automatic
Programmer

B4 Study Guide, Revision 1.4.3! 69

Stage 2: Data Wires

Then, we connect the data wires as shown in the following Figure.

Setup of Experiment 11: Data Wiring only

70! B4 Study Guide, Revision 1.4.3

Stage 3: 1-Pin Control Wires:

Finally, we connect the one-pin control wires as shown in the following figure. The wiring of
the Automatic Programmer can be a bit tricky. Each control wire has a name, such as
Reset Program Counter. You will find a pin with the same name on the corresponding
board.

Setup of Experiment 11:1-Pin Control Wiring only

Congratulations, we are done. The final setup looks like in the following Figure: Make sure
you connect the USB cable to the Automatic Programmer.
B4 Study Guide, Revision 1.4.3! 71

Setup of Experiment 11: All Wires

This completes our hardware setup. Let’s continue with software.

Step 3: Installing and Configuring the Arduino IDE

Install the Arduino IDE on your laptop. If it is already installed, check the version number,
which should be 1.6.8 or higher. If you need to download the Arduino IDE, head to https://
www.arduino.cc/en/Main/Software and follow the download and installation instructions.
Once the IDE is installed, go to the Tools Menu and select Arduino/Genuino Uno as Board.
Then, go to the Ports submenu and select the USB port of your computer, which is
connected to your Arduino.

U
SB

72! B4 Study Guide, Revision 1.4.3

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software

Arduino IDE: Selection of the Board

Step 4: Installing the Arduino Library

Download the B4 library from http://www.digital-technologies.institute/downloads . Locate
the folder, called B4-master and rename it to B4. Then, copy it into the Libraries folder in
which your Arduino Sketches reside. On Windows and Macintosh machines, the default
name of the folder is "Arduino/libraries" and is located in your Documents folder. Then, re-
start the Arduino IDE and go into the File menu. There, select Examples, and click on B4.
This will look something like in the following figure:

Automatic Programmer: B4 Library

The Library contains a number of programs already. Let’s run the testProgram first. Select
it from the menu. This will open a new window which will look like in the following figure.
B4 Study Guide, Revision 1.4.3! 73

http://www.digital-technologies.institute/downloads
http://www.digital-technologies.institute/downloads

 A B4 Test Program for the Automatic Programmer

You just need to click on the second button from the top to compile the code and
upload it to the Arduino. Sit back and watch the LEDs of the B4 flashing, as the program
gets uploaded.

The testProgram performs the following calculation 1+2-2+4-1+11-1+2-1, which is hiding
inside the functionTest() routine. This might appear a bit odd, but this calculation, including
a number of write commands, requires all program steps and produces a result of 15, or
binary 1111.

The program is designed so that we can check if the wiring is all ok. Click on the Enter
button of the Program Counter repeatedly until it displays 15. If you see the Latch also
showing 1111, then you can be sure that you have wired up the B4 correctly. If not, go
back to the previous pages and double-check.

With the Automatic Programmer installed, we can run different programs really quickly. To
run the programs already included in the Arduino library, all you need to do is to go into the
library as explained above and select the program you want. We will see a little later how
to design our own programs. Now select the Example_1 program.

74! B4 Study Guide, Revision 1.4.3

A B4 Program for the Automatic Programmer

To run this Program on the B4, click on . When the upload is complete, you can press
the Enter button on the Program Counter.

Let’s have a look at this program. Like the testProgram, it consists of a declaration of
myB4, which is an instance of the B4 class. Then, we have a Data block, a Program block,
a loadDataAndProgram() routine and finally a programB4() function. In the data and
program blocks, the first 4 bit data is for program step 0 and the last one for program step
15. You have probably noticed that the 4 bit binary numbers all start with a B. This is the C-
programming language way of knowing that it should deal with binary numbers. If we didn’t
declare that, then the compiler would assume that the binary number 0101 is actually one
hundred and one. This would lead to the wrong results, as we want a 5, not a 101.

Let’s explore the Data RAM Content first. There you can see the binary of the numbers 5,
4, 0, 2, and then 0s. We know that these are the numbers that we will perform some
arithmetic operations on. Let’s explore the Program RAM to find out what these are.
B0010 means to load data into the Latch for further programming. B0000 loads data into
the Adder. B0110 stores data from the Latch into the Data RAM. B1000 performs a

B4 Study Guide, Revision 1.4.3! 75

subtraction. So, we now know that the program performs the following operations: 5+4,
store the result (9), subtract 2, store the result (7).

 int DataRAMContent[] = {
 B0101, B0100, B0000, B0010,
 B0000, B0000, B0000, B0000,
 B0000, B0000, B0000, B0000,
 B0000, B0000, B0000, B0000,
 };

 int ProgramRAMContent[] = {
 B0010, B0000, B0110, B1000,
 B0110, B0000, B0000, B0000,
 B0000, B0000, B0000, B0000,
 B0000, B0000, B0000, B0000,
 };

In our familiar table format, the same program looks as follows:

bit #

Data RAMData RAMData RAMData RAM Program RAMProgram RAMProgram RAMProgram RAM Description

3 2 1 0 SUB WRT SEL USR

Steps 5-15

Step 4

Step 3

Step 2

Step 1

Step 0

0 0 0 0 0 0 0 0 do nothing

0 0 0 0 0 1 1 0 Store the result
into the Data
RAM

0 0 1 0 1 0 0 0 Subtract 0010
from the contents
of the Latch by
activating the
Inverter.

0 0 0 0 0 1 1 0 Store the result
back into the
Data RAM

0 1 0 0 0 0 0 0 Add 0100 to the
contents of the
Latch.

0 1 0 1 0 0 1 0 Load 0001 from
the Data RAM
into the Latch.
This is the first
number for the
Adder

Program for Experiment 11

76! B4 Study Guide, Revision 1.4.3

After the Data and Program blocks, we call the myB4.loadDataAndProgram() function and
pass along the DataRAMContent and ProgramRAMContent arrays which we want to be
stored in the Data and Program RAM modules. As a last step, we call up the
myB4.programB4() function. This is a collection of other functions that will then perform the
necessary steps to program the B4. This includes the following functions:

 void clearDataRAM();
 void clearProgramRAM();
 void setData();
 void setProgram();
 void reSetProgramCounter();
 void clockCycle();
 void writeRAM(int port);
 void resetLatch();

The library shields these functions from the user to keep things simple. But you can
explore the C++ code behind the entire B4 library by going into the Arduino/libraries/B4
folder and have a look at the file B4.cpp with a simple text editor.

B4 Study Guide, Revision 1.4.3! 77

Experiment 12: Program Language Design! ! ! ! ! !

Now that we understand how a computer works internally with its data and opcodes we
can begin to think of a higher-level language to program the B4. Computer scientists often
speak about a higher-level language when it resembles less the computer-internal
representation, and more the way humans like to think and talk about programs and data.
Ideally we want our computer to understand something like 5+4-2, and this is our goal. We
start with a first step by trying to make our program more compact and easier to read and
write, Admittedly, dealing with arrays of binary data and having to remember opcodes is a
bit tedious, so let’s think of a language in which we write what we want the computer to do
on which data we want the operation to be performed on. Of course, we want to express
our data in the decimal format that we are familiar with. We could, for example, express
5+4-2 as a list of the following five steps:

LOAD(5);
ADD(4);
WRT();
SUB(2);
WRT();

This is a more compact representation of the binary code representation that you are
already familiar with:

int DataRAMContent[] = {
 B0101, B0100, B0000, B0010,
 B0000, B0000, B0000, B0000,
 B0000, B0000, B0000, B0000,
 B0000, B0000, B0000, B0000,
 };

 int ProgramRAMContent[] = {
 B0010, B0000, B0110, B1000,
 B0110, B0000, B0000, B0000,
 B0000, B0000, B0000, B0000,
 B0000, B0000, B0000, B0000,
 };

Don’t you agree that our new programming language is much easier to read?

However, our B4 doesn’t yet understand what a LOAD, ADD, WRT and SUB command
means and has definitely no idea what it should do with these commands. LOAD, ADD,
WRT and SUB are called an assembly language, whilst the 0s and 1s we have been
working with so far form a machine code. Internally, the B4 can only understand machine
code.

So we need to write a program that can translate assembly to machine code. This is called
an assembler.

78! B4 Study Guide, Revision 1.4.3

To write an assembler, we first match the assembly commands to the corresponding
machine code instructions. Let’s do this in the following table.

Assembly Language Machine Code

LOAD B0010

ADD B0000

WRT (write) B0110

SUB (subtract) B1000
Matching Assembly Language with Machine Code

You notice, that LOAD, ADD and SUB have just one active bit, whilst WRT has two
(B0110). Technically, we could decide that WRT is B0100 as this would suffice to write
data into the Data RAM module. By activating the bit for the 2-to-1 Selector, we apply a
clever little trick which allows us to use the result of a WRT command as input for the next
arithmetic operation.

Our assembler will perform the following steps:
1) Break the program into the individual commands
2) Map the assembly commands to machine code
3) Bring the machine code into the proper sequence into the ProgramRAMContent[].
4) Identify the data that belongs to each command (5,4,0,2,0) and copy it into the

DataRAMContent[] array.

The function that performs the above-mentioned tasks (and more) is called assembler and
is part of the B4 library. If you would like to get to know its details, you can open the file
B4.cpp in the Arduino/libraries/B4 folder.

With this new function in place, the programming of our B4 is now significantly simplified.
As shown in the following figure, go to Examples/B4/Assembly_Example_1 in the Arduino
IDE and open it.

B4 Study Guide, Revision 1.4.3! 79

Loading the Assembler Example Sketch

This will load the following Arduino sketch:

Assembly Example Sketch
80! B4 Study Guide, Revision 1.4.3

In line 4, we define a string, which we call assemblyProgram and fill it with our assembly
code. Each command is completed by a semicolon. You may have seen this before, for
example in programming languages such as C, C++ or Java. The semicolon at the end of
the line indicates the end of a command. This makes it much easier for the assembler to
distinguish individual commands from each other and therefore translate assembly code
correctly into machine code.

"LOAD(5);ADD(4);WRT();SUB(2);WRT();"

In line 9, we call the assembler function and pass the assemblyProgram along. Our B4
library will then perform the translation steps described above and produce the
DataRAMContent[] and ProgramRAMContent[] arrays that you are already familiar with
from the previous pages. You don’t get to see them in this code, as they are being
generated internally in the B4 library, but you can see them and some of the internal

operation of the B4 library when you open the Arduino IDE’s Serial port monitor . Make
sure to set the baud rate to 9,600.

The final step, as shown in line 10, is to call the programB44() function. This will perform
the necessary steps to load the contents of the DataRAMContent[] and
ProgramRAMContent[] arrays into the B4’s Data and Program RAM modules.

Simplifying our Program
Our program contains two WRT() functions. The first one stores the result of the 5+4
operation, whilst the second one stores the final result of 5+4-2. As the B4’s Latch already
holds on the result of 5+4 it is not really necessary to store 9 in the Data RAM. We can
therefore simplify our program to:

"LOAD(5);ADD(4);SUB(2);WRT();"

Since the final result is only stored in RAM, but not being used for further arithmetic
operations, the setting of the 2-to-1 Selector bit as part of the WRT() assembly code is
irrelevant. It can therefore be simplified to B0100. You see how simple design choices,
such as WRT() being either B0110, or B0100 are often made by the function we expect a
computer to perform.

Question 12.1

?
If you were to design a calculator, would
you design WRT() to be B0110, or B0100?

? If WRT() were B0100 and you wanted the
B4 to run the following program
"LOAD(5);ADD(4);WRT();SUB(2);". What
would the output of the Latch be after
program step 3 has been executed? Why
is the result not 7? How can this be
explained?

B4 Study Guide, Revision 1.4.3! 81

Summary
In this experiment, we have made a great step forward in simplifying the programming of
the B4 and the readability of the B4 programs. We have designed our own higher-level
programming assembly language and have translated the assembly code into machine
code with an assembler program that is part of the B4 Arduino library.

When writing programs for the B4, we can now deal less with the internal workings of the
computer. For example, the ADD instruction ensures that the 2-to-1 Selector’s output is
from the Data RAM.

This experiment has set the foundation for the design of compilers for other programming
languages. For example, it is conceivable to translate some simple Scratch™ code into
B4™ assembly and from there into B4 machine code. Or you could think of your very own
commands instead of LOAD, ADD, SUB and WRT, possibly in a foreign language. You
could even design your own programming language.

We would like to encourage you to explore this further.

82! B4 Study Guide, Revision 1.4.3

Experiment 13: On the Role of Timing ! ! ! ! ! !

In the previous chapters we have discussed that it is essential that the timing of the
different components is done just right, so that the B4’s modules operate in concert.

When we press the Enter button on the Program Counter, the following sequence of
events takes place. We created a small video that you can find at http://digital-
technologies.institute/videos. to watch every single step. Let’s begin:

1) The Program Counter updates its value. It adds 1 to whatever it is showing presently.
2) The CLK signal is being generated and sent to the Latch. The Latch then stores the

data from the 2-to-1 Selector.
3) Both, Data RAM and Program RAM switch to the data referenced by the Program

Counter
4) The !CLK signal is being generated and sent to the Program RAM.
5) Where the bits are set to 1, the new output of the Program RAM activates the Inverter,

2-to-1 Selector, and storage into the Data RAM
6) If the WRT bit is 1, it is combined with the !CLK signal and sent to the Data RAM, which

will then store whatever data is in the Latch. On the B4, the !CLK signal is as long as
you press the Enter button. In comparison, Apple’s A9 processor has a maximum clock
rate of 1.85 GHz. There, a CLK or !CLK signal would only be 0.9 nano seconds long, or
0.000 000 000 9 seconds.

7) The output of the Data RAM is fed to the Inverter and the 2-to-1 Selector
8) The adder adds the data from the Latch and the data from the output of the Inverter

We see that, at step 2 of a new cycle, the Latch stores the result from the arithmetic
operation of the previous cycle.

As we have seen, even a very simple computer like the B4 requires quite a bit of
coordination. You can imagine that the timing of modern processors is much more
sophisticated. Let’s assume we have a modern smartphone with a 1GHz processor. 1GHz
means that the processor operates at 1 billion instructions per second and that one
instruction is therefore 1 billionth of a second long. The speed of light, and therefore the
speed at which electricity can travel through a wire, is approximately 300,000 km per
second, or 300,000,000 meters per second. Distance is defined as speed x time, so if we
multiply 300,000,000 m/s with 0.000 000 000 1 s we get 30cm.

The faster our processors tick, the shorter the maximum allowable length of the wires.
That’s one of the reasons, why, for example, the USB wires to external devices are never
very long. As the transfer speed increases, so has the length of wires to decrease.

B4 Study Guide, Revision 1.4.3! 83

http://digital-technologies.institute/videos
http://digital-technologies.institute/videos
http://digital-technologies.institute/videos
http://digital-technologies.institute/videos

Experiment 14: So, how does a Computer work ... actually?! ! !

Now that you have progressed to this chapter you have learned about the different parts
that a basic computer is made of, such as an adder, inverter, latch, etc. You have also
learned that opcodes control the flow of data and activate and deactivate modules and that
they instruct the RAM to store data.

You might wonder, however, how all this is happening physically. In experiment 5, where
we discussed random data, we mentioned that the RAM is made of hundreds of little
switches. The switch nature is true for all the logic chips that you find in the B4. These are
the little black boxes with legs. They look like this:

A Logic Gate Integrated Circuit

The question is: What do they do? Let’s explore this on the following pages.

Computers exist because of three major achievements:

1) Our philosophers, scientists and mathematicians have developed the concept of logic
which is the systematic study of the form of arguments.

2) Some more philosophers, scientists and mathematicians have been able to translate
really complex logic to simple yes/no decisions.

3) Our physicists and engineers have learned to design and build machines where
switches are so tiny so that millions and billions of them can be packed in tiny spaces
where they reliably and rapidly solve logic problems near light speed.

Logic and Boolean Logic

Let us consider the above points 1) and 2) a bit closer. The systematic study of logic dates
back to ancient times in China, India and Greece. One of the founding fathers of Greece
logic, which became widely used in the Western and Arabian world, was Aristoteles. He
lived in the 4th century BC. His work set the foundation of more work on logic since then,
including in the Middle Ages. In the 1850‘s Mr. George Boole made a remarkable
breakthrough when he developed a branch of algebra in which the values of the variables
are the truth values TRUE and FALSE. In his honour, we speak of Boolean Logic.

84! B4 Study Guide, Revision 1.4.3

The history of logic alone would fill many books and is outside of the scope of this
handbook, but suffice to say that today’s computing has a foundation that started some
2,500 years ago.

Let’s explore Boolean Algebra: You would be surprised to hear that just a few words in the
English language (and in most if not all other languages) are the key to modern computer
science. These are TRUE, FALSE, AND, OR, and NOT.

Let’s take a look: If you want both, apples and bananas you would say: “ I would like
apples AND bananas”. This indicates to anyone hearing you that you want both. However,
you might be content with receiving apple or bananas, or both, then you would say “ I
would like apples OR bananas”. Your mum would then give you apples, or bananas, or
apples and bananas. Let’s assume you don’t like bananas and you want to make sure
your mum doesn’t give you bananas. Then you could say. “I would like apples but NOT
bananas”. If you wanted apples or bananas, but never both, you would say: ”I would like
either apples or bananas”

These logical operations are called AND, OR, Negation, and Exclusive OR (XOR)

“I would like ...” is a bit verbose in day to day use in mathematics and computer science,
so we can safely reduce these expressions to:

apples AND bananas
apples OR bananas
apples AND NOT bananas
apples XOR bananas

Let’s assume that you want to build a little machine that looks at the inputs to tell us
whether your request has been met, with a simple TRUE/FALSE output statement.

We can use a truth table to determine if these conditions are met. Below, we have written
the truth tables for AND, OR, AND NOT (NAND), and Exclusive OR (XOR)

apples bananas output

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE
apples AND bananas truth table

apples bananas output

TRUE TRUE TRUE

TRUE FALSE TRUE

B4 Study Guide, Revision 1.4.3! 85

apples bananas output

FALSE TRUE TRUE

FALSE FALSE FALSE
apples OR bananas truth table

apples bananas output

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE FALSE

FALSE FALSE FALSE
Apples AND NOT bananas truth table

apples bananas output

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE
Either Apples or bananas (XOR) truth table

A Logical Adding Machine

Let’s put our newly-acquired knowledge about logic to some good use and think about a
machine that adds two one bit binary numbers, A and B. This will result in a 2 bit number.
From now on, let’s set 1 for TRUE and 0 for FALSE so we have a little bit less to write.
How would the truth table of such a machine look like? Let’s have a look at the following
table:

A B sum

1 1 10

1 0 01

0 1 01

0 0 00
Adding two binary numbers

86! B4 Study Guide, Revision 1.4.3

1+0=1 and so is 0+1. 0+0=0 and 1+1=2, which is in the binary system 10 (one zero).

We can write this a bit differently in the following form:

A B sum (higher bit)
carry over

sum (lower bit)

1 1 1 0

1 0 0 1

0 1 0 1

0 0 0 0
Adding two binary numbers

So, the sum’s lower bit is 1 when either A OR B are 1, but not when both or none of them
is 1: So we write: A XOR B

The carry-over is only 1 when A AND B are both 1: We write A AND B

So, to add two 1 bit numbers , we need two machines: One XOR machine and one AND
machine. Let’s call these machines gates. Let’s then arrange these two machines so that
our two binary numbers A and B are connected to the inputs of the AND and XOR Gates.
Let’s then change the values of A and B and observe the sum and carry over outputs. The
following table shows the 4 possible combinations of A and B and the outputs that our
gates produce. Let’s have a look:

0+0=00

B4 Study Guide, Revision 1.4.3! 87

0+1=01

1+0=01

1+1=10

A Simple Adding Machine with Logic Gates

By applying Boolean logic to the problem of arithmetic, we can design a small machine
that can add two binary values. We have not yet found out how we would actually engineer
88! B4 Study Guide, Revision 1.4.3

such a machine. Let’s park the engineering issue for a moment until we have applied
Boolean logic to the issue of memory in the following section.

A Logical Memory Machine
Logic gates can not only add, but also remember. Memory, as you have seen throughout
this handbook, when we explored the Latch and RAM modules, is a fundamental function
of a computer.

To explore this further, let’s quickly expand our knowledge of the logic gates from the
previous section, where we learned about AND, OR, NOT, and XOR. If we combine OR
and NOT, we get a gate that is called NOT-OR, or, in brief, NOR. The truth table for NOR
is similar to the familiar OR truth table, with the main difference being that the output is
always negated. This means that when the OR gate produced a TRUE output, the NOR
gate produces a FALSE and when OR resulted in FALSE, then NOR will be TRUE. The
NOR truth table is shown below.

A B output

TRUE TRUE FALSE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE TRUE
NOR truth table

We now take two NOR gates and wire them up in a way that the output of each gate is
connected to the input of the other. This, as you will see, is a common characteristic in
computers: The output of one part is the input of another, and vice versa. This is called a
feedback loop.

A Feedback Circuit with two NOR gates

B4 Study Guide, Revision 1.4.3! 89

Let’s explore this circuit by playing with our input switches A and B. We start by pressing
button A.

Button A has been
pressed. NOR1
received a 1 from
button A and a 0
from NOR 2 ...

... 0 NOR 1 is 0,
which the NOR1
gate now gives to
the NOR2 gate ...

... 0 NOR 0 is 1,
which the NOR2
gate now gives to
the light bulb and to
the NOR1 gate ...

... and because 1
NOR 1 is 0, the
NOR1 gate does
not change its
output. The circuit
is now stable.

But what happens when we release button A? Let’s find out.

90! B4 Study Guide, Revision 1.4.3

Button A has been
released. NOR1
receives a 0 from
button A and a 1
from gate NOR2 ...

... 0 NOR 1 is 0,
which is the same
result as 1 NOR 1
when the button A
was still pressed.
As a result, the
output of NOR1
does not change
and therefore the
output of NOR 2
stays constant as
well. The light stays
on.

B4 Study Guide, Revision 1.4.3! 91

Releasing button A has no impact on the output of our circuit. It has remembered that A
has been pressed. We have just constructed a 1 bit memory cell - congratulations !

Our memory cell not only needs to remember when it was activated (1), but also when it
should reset to 0. An this is the function of button B. Let’s now explore when button B is
pressed. We continue from the previous picture.

Button B has been
pressed. NOR2
receives a 1 from
button B and a 0
from NOR1 ...

... 0 NOR 1 is 0,
which the NOR2
gate now gives to
the output and to
the NOR1 gate ...

... 0 NOR 0 is 1,
which the NOR1
gate now gives to
the NOR2 gate ...

... and because 1
NOR 1 is 0, the
NOR2 gate does
not change its
output. The circuit
is now stable.

92! B4 Study Guide, Revision 1.4.3

Finally, we release button B. This produces the following steps

Button B has been
released. NOR2
receives a 0 from
button B and a 1
from gate NOR1 ...

... 0 NOR 1 is 0,
which is the same
result as 1 NOR 1.
As a result, the
input of NOR2 does
not change and
therefore the output
of NOR 2 stays
constant as well.
The light stays off.

You have probably seen the similarities between switching the buttons A and B on, and
between switching them off. We can say that one gate plays the helper for the other gate
to keep it either on and off. In this relationship neither of the two gates plays any greater or
lesser role than the other gate. It is interesting to note that neither of the two NOR gates is
able to store information by itself. However, two NOR gates, properly connected with each
other has the ability to memorise information. This circuit is called a flip-flop. The first
electronic flip flop was invented by two British physicists in 1918. Since then, many
different types of flip-flops have been invented. Some of them use other gate types than
NOR, such as NAND (NOT AND) gates. However, common to all flip-flops is the feedback
characteristic between at least two gates and that flip-flops can hold a state. Some flip-
flops only require one input switch, as opposed to the two input switches that our flip-flop
uses. Our flip-flop is a SR NOR flip-flop. SR means ‘set-reset’ and denotes two inputs: one
to Set the flip-flop to an output of 1 and another to Reset the flip-flop’s output to 0. In our
SR NOR flip-flop, button A is the set button and B is the reset button.

Engineering
To this point, we have learned that we need different types of gates (AND, XOR) to make
an adding machine, and other gates (NOR) to build memory. Each of these gates can be
constructed of a cleverly-arranged set of little switches, called transistors. They have been
around since the 1920’s, but developed in earnest since the 1940’s. Transistors are
electronic switches that can be closed by applying an electric current. They can be
fabricated in semiconductor materials and can be made so tiny so that billions of them fit
on a chip the size of your fingernail. A typical AND or OR gate would require 2 transistors,
a XOR gate 6 and a NOR gate 2.

B4 Study Guide, Revision 1.4.3! 93

For example, to build an AND gate, one would arrange two switches in sequence as
follows:

Realising an AND gate with two switches

The circuit can only be closed by closing the switches A and B.

In order to make an OR Gate, we would arrange the switches in parallel, so that when
either is pressed, current can flow. This would look like this:

 Realising an OR gate with two switches

Let’s look at a concrete example of AND and OR gates: The B4’s 2-to-1 Selector is a set of
transistors arranged in such a way that they switch data from an input to an output. In their
on state they switch data from the Data RAM. In their off state, the data is directed from
the Adder to the output. Below, we have the logic diagram of the inside of the 2-to-1
Selector. Let’s take a look:

94! B4 Study Guide, Revision 1.4.3

Inside the 2-to-1 Selector

At the top you see four switches that represent the input from the Data RAM. At the
bottom, there are four switches representing the Adder Input. On the right, there are four
Light bulbs representing the output of the 2-to-1 Selector. These are the same lights you
see on the 2-to-1 Selector module. In the middle, on the left hand side of the above figure,
you see a switch, called Select. When activated, it selects the data from the Data RAM to
be channelled to the output. When in the off state, data from the Adder will reach the
Output. In between the switches and light bulbs, you see 8 AND gates and 4 OR gates =
12 gates in total. Each gate consists of two transistors leading to 24 transistors. There is
also one inverter consisting of 1 transistor. The entire 2-to-1 Selector circuit therefore
consists of 25 transistors. Try to analyse the function of this circuit. To help you, we provide
one additional screenshot with the Select switch in off position:

B4 Study Guide, Revision 1.4.3! 95

2-to-1 Selector (Select switch off)

According to Wikipedia, the largest transistor count in a commercially available single-chip
processor in the year 2016 is over 7.2 billion. This is the Intel Broadwell-EP Xeon
processor.1

You can imagine that a chip consists of transistors that have been arranged in such a way
that they form all sorts of different gates which are interconnected in clever ways so that
they form arithmetic units that can perform calculations, such as adding. Other gates
interact to work as memory and other gates engage in the control flow of data. This is quite
extraordinary, as the underlying transistors can only switch on and off. By connecting them
intelligently, we can let them perform very complex functions, which you see every day
when you use a computer. Brilliant research was required to produce special materials,
such as semiconductors, which have defined capabilities to conduct electronic current only
when an electric charge is applied to them. In the diagram below, you see how each
design step in the design process from semiconductors to transistors and from there to
gates and higher-level functions has led to increased functionality and sophistication.
Semiconductors were first discovered around the year 1821. It took 150 years of research
and development until the first integrated micro-controller, the Intel 4004, was released.

96! B4 Study Guide, Revision 1.4.3
1 Source: Wikipedia: https://en.wikipedia.org/wiki/Transistor_count

https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor_count

higher-level functions, such as
Arithmetics, Memory, Switching, etc.

Gates

Transistors

Semiconductor Materials

Summary
In this chapter we have learned how the 2,500 year long history of logic has led to a
method of Boolean algebra in which we can define logical functions we call gates.
Intelligently arranged, these gates can be put to good use to add or store information.
Gates themselves are made of transistors, also intelligently arranged to perform the
desired function of the gates, such as AND, XOR, NOR, etc. Computer chips can consist
of billions of transistors. The design of a computer chip is therefore a high-tech task that
requires many scientists and engineers. The B4’s different modules demonstrate some of
the most important parts of a computer’s central processing unit. Each of the B4’s modules
has chips on it, which are internally made of gates and transistors. We haven’t really
counted them, but we estimate that the B4 is made of a few thousand gates. Most of them
would be in the Data RAM and Program RAM chips.

Question 14.1

?
Compare your knowledge about
transistors that form gates to what you
know about biological systems. Can you
identify similarities?

? If transistors were made of mechanical
parts that moved, rather than
semiconductor materials, what
disadvantages would this bring??
How much does it cost to manufacture a
microprocessor? What would be the price
per transistor for this microprocessor?

B4 Study Guide, Revision 1.4.3! 97

Further Reading
Below we have listed some really good resources that we used during the design of the
B4. We very much recommend reading them.

Charles Petzold, CODE The Hidden Language of Computer Hardware and Software, 1999
http://www.charlespetzold.com/code/
Logic Gate: https://en.wikipedia.org/wiki/Logic_gate
Digital Logic Gates: http://www.electronics-tutorials.ws/logic/logic_1.html
Flip Flops: https://en.wikipedia.org/wiki/Flip-flop_(electronics)
History of Logic: https://en.wikipedia.org/wiki/History_of_logic
Transistor: https://en.wikipedia.org/wiki/Transistor

Troubleshooting
Every good experiment has the potential for failure. This is usually the moment when we
learn something new. Below is a list of the typical errors and their solutions.

Symptom Solution

Green light of a module is off Check if power cable is connected

Check if the wires at the power cable plugs are
fully inserted. Change cable.

Unexpected behaviour. Odd
output of the modules. Looks
erratic.

Check if all wires are properly connected. Tick
them off one by one on the schematic of the
corresponding experiment.

Check if the wires at the data cable sockets are
fully inserted. Change cable.

Have you inserted the correct module? Check!

All lights are off Connect USB cable to a computer, USB power
outlet or USB battery.

There may be a short circuit, usually cause by a
power cable. Disconnect all power cables from the
Program Counter and check if the Program
Counter’s green LED comes on. If yes, carefully
connect one module after the other.

Still got problems? Email us at: enquiries@digital-technologies.institute.

98! B4 Study Guide, Revision 1.4.3

http://www.charlespetzold.com/code/
http://www.charlespetzold.com/code/
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logic_gate
http://www.electronics-tutorials.ws/logic/logic_1.html
http://www.electronics-tutorials.ws/logic/logic_1.html
https://en.wikipedia.org/wiki/Flip-flop_(electronics
https://en.wikipedia.org/wiki/Flip-flop_(electronics
https://en.wikipedia.org/wiki/History_of_logic
https://en.wikipedia.org/wiki/History_of_logic
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Transistor
mailto:enquiries@digital-technologies.institute
mailto:enquiries@digital-technologies.institute

Appendix A: Programming Table Template
You can photocopy this table and use it to design and document your own programs for
the B4.

Name of the Program ______________________

Author(s): __________________________________

Step #

Data RAMData RAMData RAMData RAM Program RAMProgram RAMProgram RAMProgram RAM Description

3 2 1 0 SUB WRT SEL USR

Step 15

Step 14

Step 13

Step 12

Step 11

Step 10

Step 9

Step 8

Step 7

Step 6

Step 5

Step 4

Step 3

Step 2

Step 1

Step 0

B4 Study Guide, Revision 1.4.3! 99

Appendix B: Fun Algorithms
In this section we collect some of the interesting problems that people have solved with the
B4 computer. We start with a fun algorithm that students have suggested.

B.1 Fairly Sharing Chocolate
As many of us agree, there is no such thing as ‘too much chocolate’. Recently, six
students were given a package of Merci chocolates. As you might know, it contains 16
small bars of chocolate, two from each type. So there are eight different types of
chocolate. But how do we distribute the chocolate most fairly amongst the students?

100! B4 Study Guide, Revision 1.4.3

Appendix C: Solutions
Here are the solutions to the tasks from the different chapters in this book.

Question 1.1 Solution

?
What is the decimal value of 1111? 8+4+2+1=15

?
What is the decimal value of 0110? 4+2=6

?
What is the decimal value of 1010? 8+2=10

? What is the binary value of decimal
15? 1111? What is the binary value of decimal
12? 1100?

What is the binary value of decimal
9? 1001

?
How can you easily spot an odd

binary number?
Odd numbers always end with a 1.

(and even numbers with a 0).

Question 2.1

?
What is 0101 + 1010? 1111 (5+10=15)

?
What is 0010+0010? 0100 (2+2=4)

? What is 0111+0001? 1000 (7+1=8)? What is 1111 + 0001? Why are
all the Adder’s LEDs off?

10000 (16). This is a 5 bit
number. All LEDs are off
because the Adder can only work
with 4 bits. It is simply ‘blind’ to
the 5th bit.

B4 Study Guide, Revision 1.4.3! 101

Question 3.1

?

Calculate in binary:

?

5 minus 2 0101-0010 is equivalent to 5 plus
the binary complement of 2 plus
1.
 0101
+1101

10010
+ 1

10011

We ignore the 5th bit (because
we only have a 4 bit computer)
and the result is 0011 (3)

?

10 minus 0 1010 (obviously), but let’s walk
through the calculation. The
binary complement of 0 is 1111
 1010
+1111

11001
+ 1

11010
We ignore the 5th bit (because
we only have a 4 bit computer)
and the result is 1010 (decimal
10)? 15 minus 15 The binary complement of 15
(1111) is 0000
 1111
+0000

 1111
+ 1

10000
We ignore the 5th bit (because
we only have a 4 bit computer)
and the result is 0000 (decimal
0)

102! B4 Study Guide, Revision 1.4.3

2 minus 3. What do you see? The binary complement of 3
(0011) is 1100
 0010
+1100

 1110
+ 1

 1111
That’s 15, not -1. Why? Our
computer can only deal with
positive numbers, so for it-1 is
the same as 15. Again; that’s not
a bug. We simply haven’t told our
computer about negative
numbers yet.

Question 12.1

?

If you were to design a
calculator, would you design
WRT() to be B0110, or B0100?

In a calculator, we often want to
use the output of one calculation
as input of another, such as
5+4=9 minus 2=7. So WRT()
should be B0110. This way, the
2-to-1 Data Selector would keep
feeding intermediate results from
the Data RAM to the Latch,
which provides it to the Adder.

B4 Study Guide, Revision 1.4.3! 103

?

If WRT() were B0100 and you
wanted the B4 to run the
following program
"LOAD(5);ADD(4);WRT();SUB(2)
;". What would the output of the
Latch be after program step 3
has been executed? Why is the
result not 7? How can this be
explained?

To answer this question, we can
conduct an experiment by
running the following program:

#include <B4.h>

B4 myB4;

 int DataRAMContent[] = {
 B0101, B0100, B0000, B0010,
 B0000, B0000, B0000, B0000,
 B0000, B0000, B0000, B0000,
 B0000, B0000, B0000, B0000,
 };

 int ProgramRAMContent[] = {
 B0010, B0000, B0100, B1000,
 B0000, B0000, B0000, B0000,
 B0000, B0000, B0000, B0000,
 B0000, B0000, B0000, B0000,
 };

void setup()
{
myB4.loadDataAndProgram(Dat
aRAMContent,
ProgramRAMContent);
 myB4.programB4();
}

void loop()
{
}
After program step (3), the
output of the Latch is B0010.
This is not B0111 because the 2-
to-1 Data selector is inactive and
has channeled the output of the
Adder (2) to the Latch. 2 is the
result of 9 (from the Data RAM)
+9 (from the Latch) after program
step 2. The sum is 18=B10010.
But since we have a 4 bit
computer, the leading 1 is
omitted. The result is B0010.

104! B4 Study Guide, Revision 1.4.3

Question 14.1

?

Compare your
knowledge about
transistors that form
gates to what you
know about biological
systems. Can you
identify similarities?

Transistors form gates, which form higher-
level functions, such as arithmetics,
memory, switching, etc. Similarly, cells form
organs, which in turn form organisms.

?

If transistors were
made of mechanical
parts that moved,
rather than
semiconductor
materials, what
disadvantages would
this bring?

Mechanical parts are larger, consume more
electricity and wear more quickly than
semiconductors. Modern processors
consist of billions of transistors. Let’s
assume we had a 1 billion transistor chip
and we wanted to build it with relays, which
are electromechanical switches. If each
transistor were to be replaced with one
relay, then we would require 1 billion
relays. Let’s further assume that 1 relay
would require 1cm^3 (the size of a sugar
cube) of space and that we need another
1cm^3 of space around each relay for
wiring, etc.. So 2cm^3 of space per relay.
That would be 2 billion cm^3. for all our 1
billion relays. That’s 2,000,000,000 cm^3 =
2,000 m^3, or the equivalent of a cube with
a side length of 12.6m, equivalent to a 4
storey building. If each relay required
50mA of current at 5V, then we’d need
50mA*1,000,000,000=50,000,000A.
50,000,000A*5V=250,000,000W, which is
250 Mega Watt. A smaller coal fired power
plant produces 500 megawatt of electricity
and burns 1.4 million tons of coal each
year. We’d need half of this.

In summary: If we could build such a relays
computer, it would be the size of a 3 storey
house, require half a coal-fired power plant
and consume 700,000 tons of coal each
year. This would be a tad too big for our
pants. Not to mention the heat that the
700,000 tons of coal generate.

B4 Study Guide, Revision 1.4.3! 105

?
How much does it cost
to manufacture a
microprocessor? What
would be the price per
transistor for this
microprocessor?

Let’s pick the XBox One processor which
has 5 billion transistors. The XBox
console’r retail price is about $350. Let’s
assume that the cost of the processor is
maybe $50. So, the price per transistor is
$50/5billion=$0.000 000 01 or 0.000001
cents, thats a thousands of a thousands of
a cent per transistor. Let’s put this into
perspective: The print edition of the New
York times newspaper has about 140,000
words. The average length of an English
word is 5 letters. We conclude that the New
York times contains 5*140,000=700,000
letters. If it costs $2 to make one copy of
the New York times , then the cost per
letter is $2/700,000=$0.000 003 or 0.000 3
cents.

0.0003 divided by 0.000001 is 300.

So, making a transistor in a chip is about
300 times cheaper than printing a letter in
a newspaper.

What if we estimated the price of the
processor wrong?If it is less than $50, then
the ratio is greater than 300:1. If it is more
than $50, let’s say $100, then the ratio is
150:1.

Fairly Sharing Chocolate:

We assign each students a number from 1 to 6. With 16 chocolates available, each
students gets 2 chocolates. The remaining 4 go to the teacher :-). 2x6=12, so there are 12
rounds in which students select one chocolate each. We number the rounds from 0 to 11
and assign rounds to students. There are many possible ways of assigning them. Below is
one of them. Student1 draws first (Round1), followed by Student2, 3, 4, 5, and Student6.
Student 6 hen draws twice, followed by Student5, 4, 3, 2, and finally Student1 draws her
second piece of chocolate.

Student1 Student2 Student3 Student4 Student5 Student6

Round0 Round1 Round2 Round3 Round4 Round5

Round11 Round10 Round9 Round8 Round7 Round6

We want the Adder of the B4 to display the number of the student whose turn it is to select
a chocolate.

106! B4 Study Guide, Revision 1.4.3

Step #

Data RAMData RAMData RAMData RAM Program RAMProgram RAMProgram RAMProgram RAM Description

3 2 1 0 SUB WRT SEL USR

Step 15

Step 14

Step 13

Step 12

Step 11

Step 10

Step 9

Step 8

Step 7

Step 6

Step 5

Step 4

Step 3

Step 2

Step 1

Step 0

0 0 0 1 1 0 0 0 Subtract 1. That’s
student1

0 0 0 1 1 0 0 0 Subtract 1. That’s
student2

0 0 0 1 1 0 0 0 Subtract 1. That’s
student3

0 0 0 1 1 0 0 0 Subtract 1. That’s
student4

0 0 0 1 1 0 0 0 Subtract 1. That’s
student5

0 0 0 0 0 0 0 0 Add 0. Student 6 gets
a second draw

0 0 0 1 0 0 0 0 Add 1. That’s student6

0 0 0 1 0 0 0 0 Add 1. That’s student5

0 0 0 1 0 0 0 0 Add 1. That’s student4

0 0 0 1 0 0 0 0 Add 1. That’s student3

0 0 0 1 0 0 0 0 Add 1. That’s student2

0 0 0 1 0 0 1 0 Load 1

Question: What other method can you think of to distribute the chocolates? How would a
program look like that implements your method?

B4 Study Guide, Revision 1.4.3! 107

108! B4 Study Guide, Revision 1.4.3

Appendix D: Extension Kits

The B4 Computer Processor Kit can be extended towards graphics, arithmetics and
memory. The extension kits are available at https://www.digital-technologies.institute/shop

Graphics Extension
Kit

This extension kit adds graphics
output capabilities to the B4 Computer
Processor. The Dot Matrix Display
Module can output ASCII-style
characters and symbols on a 4 by 5
LED matrix. In addition, students can
program 16 of the LEDs separately
and thus design their own graphics.

Arithmetics Extension
Kit

This kit offers an exciting opportunity
to dive deeper into the inner workings
of a digital system by expanding the
arithmetic capabilities of the B4
towards multiplication, division and
beyond. In the process of
implementing these capabilities from
the ground up in a computer, students
learn about loops, conditional jumps,
data pointers and memory addresses.

Computer Memory
Kit

The ability to remember is one of the
fundamental functions of any
computer. Memory is essential to
perform algorithms. We have taken a
deep look inside the black box and
enlarged it. The result is an interactive
memory kit that shows us the inner
workings of a data RAM The RAM
module. can be used as a
replacement of the Data RAM module
in the B4 Computer Processor kit.

B4 Study Guide, Revision 1.4.3! 109

https://www.digital-technologies.institute/shop
https://www.digital-technologies.institute/shop

Appendix E: Quick Reference Guide

binary decimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

OpcodesOpcodes

Output Program RAM ModuleOutput Program RAM ModuleOutput Program RAM ModuleOutput Program RAM Module

A B C D

Subtract SUB

Write to Data
RAM WRT

Select SEL

1 0 0 0

0 1 1 0

0 0 1 0

110! B4 Study Guide, Revision 1.4.3

